Advertisement

Thermoelastic Characteristics of a Composite with Anisotropic Platelike Inclusions

  • V. S. Zarubin
  • G. N. Kuvyrkin
  • I. Yu. Savel’eva
Reliability, Strength, and Wear Resistance of Machines and Structures

Abstract

A mathematical model is constructed describing the thermomechanical action of the elements of a composite structure (platelike inclusion and matrix particles) and isotropic elastic medium with the required thermomechanical characteristics. The model is used at the first stage to obtain the matrix relations by the self-consistent method to find the elastic modulus of the composite. At the second stage, it is used to determine the temperature coefficient of linear expansion. Using the variation approach for the composite considered, the two-way estimates of the volumetric elasticity modulus, shearing modulus, and temperature coefficient of linear expansion are determined. The estimated dependences presented allow forecasting the thermoelastic characteristics of the composite, which is reinforced with the anisotropic platelike inclusions (including in the form of nanostructural elements).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Komkov, M.A. and Tarasov, V.A., Tekhnologiya namotki kompozitnykh konstruktsii raket i sredstv porazheniya (Winding Technology of Composite Structures, and Missile Weapons), Moscow: MGTU im. N.E. Baumana, 2011.Google Scholar
  2. 2.
    Shermergor, T.D., Teoriya uprugosti mikroneodnorodnykh sred (Theory of Elasticity of Micro-Inhomoheneous Media), Moscow: Nauka, 1977.Google Scholar
  3. 3.
    Christensen, R.M., Mechanics of Composite Materials, New York: Wiley-Interscience, 1979.Google Scholar
  4. 4.
    Arzamasov, B.N., Krasheninnikov, A.I., Pastukhova, Zh.P., and Rakhshtadt, A.G., Nauchnye osnovy materialovedeniya (Scientific Principles of Material Science), Moscow: MGTU im. N.E. Baumana, 1994.Google Scholar
  5. 5.
    Kats, E.A., Fullereny, uglerodnye nanotrubki i nanoklastery. Rodoslovnaya form i idei (Fullerenes, Carbon Nanotubes and Nanoclusters. Genealogy of Forms and Ideas), Moscow: LKI, 2008.Google Scholar
  6. 6.
    Stankovich, S., Dikin, D.A., Dommett, G.H.B., Kohlhaas, K.M., Zimmey, E.J., Stach, E.A., Piner, R.D., Nguyen, S.T., and Ruoff, R.S., Graphene-based composite materials, Nature (London, U.K.), 2006, vol. 442, pp. 282–286.CrossRefGoogle Scholar
  7. 7.
    Eletskii, A.V., Iskandarova, I.M., Knizhnik, A.A., and Krasikov, D.N., Graphene: fabrication methods and thermophysical properties, Phys. Usp., 2011, vol. 54, no. 3, pp. 227–258.CrossRefGoogle Scholar
  8. 8.
    Berinskii, I.E. and Krivtsov, A.M., On using many-particle interatomic potentials to compute elastic properties of graphene and diamond, Mech. Solids, 2010, vol. 45, no. 6, pp. 815–834.CrossRefGoogle Scholar
  9. 9.
    Zarubin, V.S., Kuvyrkin, G.N., and Savel’eva, I.Yu., Thermal conductivity of the textured composite with anisotropic lamellar inclusions, Kompoz. Nanostrukt., 2015, vol. 7, no. 1, pp. 1–13.zbMATHGoogle Scholar
  10. 10.
    Eshelby, J.D., The continuum theory of lattice defects, in Progress in Solid State Physics, Seitz, F. and Turnbull, D., Eds., New York: Academic, 1956, vol. 3, pp. 79–303.Google Scholar
  11. 11.
    Zarubin, V.S. and Kuvyrkin, G.N., Matematicheskie modeli mekhaniki i elektrodinamiki sploshnoi sredy (Mathematical Models of Mechanics and Electrodynamics of Continuous Media), Moscow: MGTU im. N.E. Baumana, 2008.Google Scholar
  12. 12.
    Zarubin, V.S., Kuvyrkin, G.N., and Savel’eva, I.Yu., Comparative analysis estimates of elastic moduli for composite. Isotropic spherical inclusions, Vestn. MGTU Baumana, Ser. Mashinostr., 2014, no. 5, pp. 53–69.Google Scholar
  13. 13.
    Golovin, N.N., Zarubin, V.S., and Kuvyrkin, G.N., Mixture models of composite mechanics. 1. Thermal mechanics and thermoelasticity of multicomponent mixture, Vestn. MGTU Baumana, Ser. Estestv. Nauki, 2009, no. 3, pp. 36–49Google Scholar
  14. 14.
    Frantsevich, I.N., Voronov, F.F., and Bakuta, S.A., Uprugie postoyannye i moduli uprugosti metallov i nemetallov. Spravochnik (Handbook on Elastic Constants and Moduli of Elasticity for Metals and Nonmetals), Kiev: Naukova Dumka, 1982.Google Scholar
  15. 15.
    Fizicheskie velichiny: Spravochnik (Physical Values, the Handbook), Grigor’ev, I.S. and Melikhov, E.Z., Eds., Moscow: Energoatomizdat, 1991.Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • V. S. Zarubin
    • 1
  • G. N. Kuvyrkin
    • 1
  • I. Yu. Savel’eva
    • 1
  1. 1.Bauman Moscow State Technical UniversityMoscowRussia

Personalised recommendations