Journal of Machinery Manufacture and Reliability

, Volume 46, Issue 6, pp 589–595 | Cite as

Computer-Aided Modeling of the Milled Groove Side Surface

  • V. M. Utenkov
  • A. G. Shirshov
  • P. A. Bykov
  • V. V. Osipov
New Technologies in Manufacturing


A procedure for the computer-aided modeling of the side surface of a milled groove is presented. The procedure is based on dissecting the groove surface with parallel planes and building 2D sections in each of these planes. The mathematical model used for the purpose makes it possible to separately account for the shifts and tilts of the mill caused by various factors. The indicated modeling can be used to optimize control programs for the purpose of attaining the target machining resolution, as well as to evaluate the precision characteristics of the metal cutting machine in the design phase.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bazrov, B.M., Tekhnologicheskie osnovy proektirovaniya samopodnastraivayushchikhsya stankov (Technological Foundations of Self-Tuning Lathes Design), Moscow: Mashinostroenie, 1987.Google Scholar
  2. 2.
    Reshetov, D.N. and Portman, V.T., Tochnost’ metallorezhushchikh stankov (Accuracy of Metal-Cutting Lathes), Moscow: Mashinostroenie, 1986.Google Scholar
  3. 3.
    Chernyanskii, P.M., Osnovy proektirovaniya tochnykh stankov. Teoriya i raschet: uchebnoe posobie (Accuracy Lathes: Design Foundations. Theory and Calculation. Student’s Book), Moscow: KNORUS, 2010.Google Scholar
  4. 4.
    Kuznetsov, A.P., Teplovoe povedenie i tochnost’ metallorezhushchikh stankov (Heat Behavior and Accuracy of Metal Cutting Lathes), Moscow: Yanus-K, 2011.Google Scholar
  5. 5.
    Kuznetsov, A.P., Teplovoi rezhim metallorezhushchikh stankov (Heat Mode of Metal-Cutting Lathes), Moscow: Yanus-K, 2013.Google Scholar
  6. 6.
    Fabio, R., From point cloud to surface: the modeling and visualization problem, in International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Tarasp, 2003, vol. XXXIV-5/W10.Google Scholar
  7. 7.
    Zwicker, M. and Cotsman, C., Meshing Point Clouds Using Spherical Parameterization, Massachusetts Institute of Technology, Harvard Univ., 2004.Google Scholar
  8. 8.
    Navpreet Kaur Pawar, Surface reconstruction from point clouds, Master Thesis, Bournemouth Univ., 2013.Google Scholar
  9. 9.
    Visual Computing Lab-ISTI-CNR. Meshlab. http://www.meshlab.netGoogle Scholar
  10. 10.
    Python Software Foundation. Python Language Reference, Ver. 3.5. http://www.python.orgGoogle Scholar
  11. 11.
    Jupyter Notebook. https://jupyter.orgGoogle Scholar
  12. 12.
    Pérez, F. and Granger, B.E., IPython: a system for interactive scientific computing, Comput. Sci. Eng., 2007, vol. 9, no. 3, pp. 21–29. doi. doi 10.1109/MCSE.2007.53CrossRefGoogle Scholar
  13. 13.
    van der Walt, S., Colbert, C., and Varoquaux, G., The NumPy array: a structure for efficient numerical computation, Comput. Sci. Eng., 2011, vol. 13, pp. 22–30. doi. doi 10.1109/MCSE.2011.37CrossRefGoogle Scholar
  14. 14.
    Hunter, J.D., Matplotlib: a 2D graphics environment, Comput. Sci. Eng., 2007, vol. 9.3, pp. 90–95. doi 10.5281/zenodo.61948. http://matplotlib.orgCrossRefGoogle Scholar
  15. 23.
    http://vispy.org10.5281/zenodo.61948Google Scholar
  16. 15.
    Shirshov, A.G., Konovalov, N.A., Utenkov, V.M., and Bykov, P.A., PC Software Certificate no. 2016613246, 22.03.2016. http://www.fips.ruGoogle Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  • V. M. Utenkov
    • 1
  • A. G. Shirshov
    • 1
  • P. A. Bykov
    • 1
  • V. V. Osipov
    • 1
  1. 1.Bauman Moscow State Technical UniversityMoscowRussia

Personalised recommendations