Advertisement

Journal of Machinery Manufacture and Reliability

, Volume 46, Issue 6, pp 582–588 | Cite as

Improved Efficiency of the Process of Low-Temperature Plasma Hardening Based on its Monitoring

  • N. S. Azikov
  • B. M. Brzhozovskii
  • M. B. Brovkova
  • E. P. Zinina
  • V. V. Martynov
  • A. V. Susskii
New Technologies in Manufacturing

Abstract

Investigations on the feasibility and development of the monitoring process for the lowtemperature plasma hardening of metal items are carried out. It is shown that it is reasonable to carry out monitoring according to the parameters of the signals registered in the plasma-item-stand-earth electric circuit and analyze it with the help of the value (Hurst exponent) numerically reflecting the main formation regularities and change of the signal structure in the hardening process. Requirements on the monitoring system providing the valid information support of low-temperature plasma hardening are formed. It is deduced from the experiments that the maximum hardened surface layer is formed if the hardening process is accompanied by signal generation with the minimal Hurst exponent values.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brzhozovskii, B.M., Martynov, V.V., and Zinina, E.P., Uprochnenie rezhushchego instrumenta vozdeistviem nizkotemperaturnoi plazmy kombinirovannogo razryada (The Way to Strength Cutting Tools by Low-Temperature Combined Discharge Plasma), Saratov: Yuri Gagarin State Technical Univ. of Saratov, 2009.Google Scholar
  2. 2.
    Brzhozovskii, B., Martynov, V., Zinina, E., and Brovkova, M., Composite ion-plasma coatings with nanodisperse reinforces phase: scientific and practical aspects of synthesis, IOP Conf. Ser.: Mater. Sci. Eng., 2016, vol. 116, p. 012007. doi 10.1088/1757-899X/116/1/01200710.1088/1757-899X/116/1/012007CrossRefGoogle Scholar
  3. 3.
    Brzhozovskii, B.M., Zinina, E.P., and Martynov, V.V., Physics of surface layer strengthening of geometrically complicated units by low-temperature plasma, Sb. tr. 13 mezhdunar konf. Plenki pokrytiya (Proc. 13th Int. Conf. Films and Coatings), St. Petersburg: St. Petersburg Polytechnic Univ., 2017, pp. 63–66.Google Scholar
  4. 4.
    Popov, V.S., Teoreticheskaya elektrotekhnika (Theoretical Electrical Engineering), Moscow: Energiya, 1971.Google Scholar
  5. 5.
    Feder, J., Fractals, Springer, 1988.CrossRefzbMATHGoogle Scholar
  6. 6.
    Afanas’ev, V.N. and Yuzbashev, M.M., Analiz vremennykh ryadov i prognozirovanie (Time Series Analysis and Prediction), Moscow: Finansy i statistika, 2001.Google Scholar
  7. 7.
    Brzhozovskii, B.M., Venig, S.B., Galushka, V.V., et al., Integral’noe otsenivanie kachestva protsessa plazmennoi modifikatsii rabochei chasti metallorezhushchego instrumenta (The Way to Estimate Integrally Plasma Modification Process of Cutting Part of Metal Cutting Tools), Saratov: Rait-Ekspo, 2014.Google Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  • N. S. Azikov
    • 1
  • B. M. Brzhozovskii
    • 2
  • M. B. Brovkova
    • 2
  • E. P. Zinina
    • 2
  • V. V. Martynov
    • 2
  • A. V. Susskii
    • 2
  1. 1.Blagonravov Institute of Mechanical EngineeringMoscowRussia
  2. 2.Saratov State Technical UniversitySaratovRussia

Personalised recommendations