Advertisement

Investigation of deformation behavior and fracture of ceramic coatings by the acoustic emission method

  • E. A. Klyatskina
  • M. D. Salvador
  • E. F. Segovia
  • P. Carpio
  • A. Borrell
  • E. Snachez
  • V. V. Stolyarov
New Technologies in Manufacturing
  • 82 Downloads

Abstract

The use of protective coatings on components of machines and mechanisms provides the greatest economic benefit at the lowest additional cost. Plasma spraying is one of the most productive, technologically advanced, and efficient methods of producing these coatings. The results of investigations of structures, mechanical properties, and fracture surfaces of ceramic wear resistant coatings produced by plasma spraying have been presented.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cartier, M., Handbook of Surface Treatments and Coatings. Tribology in Practice Series, London: Professional Engineering Publishing, 2003.Google Scholar
  2. 2.
    Lesyevskii, L.N., Lezhnev, L.Yu., Lyakhovetskii, M.A., et al., Inorganic solid lubricating coatings for heat engines and power plants, J. Mach. Manuf. Reliab., 2015, vol. 44, no. 5, pp. 455–463.CrossRefGoogle Scholar
  3. 3.
    Bhushan, B., Handbook of Tribology. Materials, Coatings, and Surface Treatments, New York: McGraw Hill, 1991, pp. 14–68.Google Scholar
  4. 4.
    Bansal, P., Padture, N.P., and Vasiliev, A., Improved interfacial mechanical properties of Al2O3–13 wt % TiO2 plasma-sprayed coatings derived from nanocrystalline powders, Acta Mater., 2003, vol. 51, pp. 2959–2970.CrossRefGoogle Scholar
  5. 5.
    Cox, L.C., The four-point bend test as a tool for coating characterization, Surf. Coat. Technol., 1988, vol. 36, pp. 807–815.CrossRefGoogle Scholar
  6. 6.
    Dunegan, H.L., Location of leaks in pipes by use of acoustic emission modal ratio techniques, Met. Eng. Quart., 1975, pp. 8–16.Google Scholar
  7. 7.
    Miguel, J.M., Guilemany, J.M., Mellor, B.G., et al., Acoustic emission study on WC-Co thermal sprayed coatings, Mater. Sci. Eng., 2003, vol. 352, pp. 55–63.CrossRefGoogle Scholar
  8. 8.
    Dalmas, D., Benmedakhene, S., Richard, C., et al., Caractérisation par émission acoustique de l’adhérence et de l’endommagement d’un revêtement: cas d’un revêtement WC-Co sur acier Chimie, Chemistry, 2001, no. 4, pp. 345–350.Google Scholar
  9. 9.
    Roques, A., Browne, M., Thompson, J., et al., Drug delivery systems in cancer therapy, Biomat., 2004, vol. 25, pp. 769–778.CrossRefGoogle Scholar
  10. 10.
    Gell, M., Jordan, E.H., Sohn, Y.H., et al., Development and implementation of plasma sprayed nanostructured ceramic coatings, Surf. Coat. Teclmol., 2001, vol. 14, pp. 648–654.Google Scholar
  11. 11.
    Goberman, D., Sohn, Y.H., Shaw, L., et al., Microstructure development of Al2O3–13 wt % TiO2 plasma sprayed coatings derived from nanocrystalline powders, Acta Mater., 2002, vol. 50, pp. 1141–1152.CrossRefGoogle Scholar
  12. 12.
    Salvador, M.D., Klyatskina, E., Bonache, V., et al., Estudio por emisión acustica del comportamiento a flexión de recubrimientos WC-Co obtenidos por plasma atmosférico, Revista Metalurg., 2007, vol. 43, pp. 414–423.CrossRefGoogle Scholar
  13. 13.
    Lin, C.K., Bernd, C.C., Leigh, S.H., et al., Modelling of elastic constants of plasma spray deposits with ellipsoid- shaped voids, J. Am. Ceram. Soc., 1997, vol. 80, pp. 2382–2394.CrossRefGoogle Scholar
  14. 14.
    Kabacoff, L., Opportunities in protection materials science and technology for future army applications, AMPTIAC Newslett., 2002, no. 6, pp. 37–43.Google Scholar
  15. 15.
    Hanshin Choi, C.L. and Kim, H.J., Processing and characterization of alumina/chromium carbide ceramic nanocomposite, J. Ceram. Processing Res., 2002, no. 3, pp. 210–215.Google Scholar
  16. 16.
    Carpio, P., Blochet, Q., Pateyron, B., et al., Correlation of thermal conductivity of suspension plasma sprayed yttria stabilized zirconia coatings with some microstructural effects, Mater. Lett., 2013, vol. 107, pp. 370–373.CrossRefGoogle Scholar
  17. 17.
    Wang, W.Q., Sha, C.K., Sun, D.Q., and Gu, X.Y., Preparation and characterization of nanostructured Al2O3–13 wt % TiO2 ceramic coatings by plasma spraying, Mater. Sci. Eng., 2006, vol. 424, pp. 1–5.CrossRefGoogle Scholar
  18. 18.
    Liang, B. and Ding, C., Microstructure analyses and thermo-physical properties of nanostructured thermal barrier coatings, Surf. Coat. Technol., 2005, vol. 197, pp. 185–192.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  • E. A. Klyatskina
    • 1
  • M. D. Salvador
    • 1
  • E. F. Segovia
    • 1
  • P. Carpio
    • 1
  • A. Borrell
    • 1
  • E. Snachez
    • 2
  • V. V. Stolyarov
    • 3
    • 4
  1. 1.Materials Technological InstitutePolytechnic UniversityValenciaSpain
  2. 2.Institute of Ceramic TechnologyJaume I UniversityCastelló de la PlanaSpain
  3. 3.Mechanical Engineering Research InstituteRussian Academy of SciencesMoscowRussia
  4. 4.National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)MoscowRussia

Personalised recommendations