Skip to main content
Log in

Crack-resistance diagrams of polymer composite materials in tension and compression

  • Reliability, Strength, and Wear Resistance of Machines and Structures
  • Published:
Journal of Machinery Manufacture and Reliability Aims and scope Submit manuscript

Abstract

It is proposed to use the fracture model and the criterion equation of a generalized crackresistance diagram in two-parameter fracture macromechanics to estimate cracking resistance and construct crack-resistance diagrams of polymer composite materials in tension and compression; these fracture model and criterion equation take into account the degree of restraint of deformations near the crack tip in the form of nonsingular T-stresses. A good agreement between the experimental values of normalized stress-intensity factors and a diagram of the calculated crack-resistance of polymer composite materials has been obtained in a wide range of crack lengths using various geometry and arrangements of specimen loading for seven carbon plastics with various orderings produced by different manufacturers using pressure-chamber and infusion methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, S. and Chao, Y.J., Variation of fracture toughness with constraint, Int. J. Fracture, 2003, vol. 124, pp. 113–117.

    Article  Google Scholar 

  2. Xhu, X.K. and Chao, Y.J., Specimen size requirements for two-parameter fracture toughnesstesting, Int. J. Fracture, 2005, vol. 135, pp. 117–136.

    Article  Google Scholar 

  3. Burdeldn, F.M. and Xu, W.G., Effects of biaxial loading and residual stresses on constraint, Int. J. Pressure Vessels Piping, 2003, vol. 80, pp. 755–773.

    Article  Google Scholar 

  4. Seitl, S. and Knersl, Z., Two parameter fracture mechanics: fatigue crack behavior under mixed mode conditions, Eng. Fracture Mech., 2008, vol. 75, pp. 857–865.

    Article  Google Scholar 

  5. Matvienko, Yu.G., Modeli i kriterii mekhaniki razrusheniya (Models and Criteria of Fracture Mechanics), Moscow: Fizmatlit, 2006.

    Google Scholar 

  6. Meliani, H.M., Matvienko, Yu.G., and Pluvinage, G., Two-parameter fracture criterion (Kρ, c-Tef, c) based on notch fracture mechanics, Int. J. Fracture, 2011, vol. 167, pp. 173–182.

    Article  MATH  Google Scholar 

  7. Matvienko, Yu.G., Shlyannikov, V.N., and Boychenko, N.V., In-plane and out-of-plane constraint parameters along a three-dimensional crack-front stress field under creep loading, Fatigue Fracture Eng. Mater. Struct., 2013, vol. 36, pp. 14–24.

    Article  Google Scholar 

  8. Meliani, H.M., Azari, Z., Pluvinage, G., and Matvienko, Yu.G., The effective T-stress estimation and crack paths emanating from U-notches, Eng. Fracture Mech., 2010, vol. 77, pp. 1682–1692.

    Article  Google Scholar 

  9. Matvienko, Yu.G., Failure assessment diagrams in structural integrity analysis, in Damage and Fracture Mechanics, Boukharouba, T., Elboujdaini, M., and Pluvinage, G., Eds., Springer, 2009, pp. 173–182.

    Chapter  Google Scholar 

  10. Matvienko, Yu.G., Effect of biaxial loading onto crack resistance diagram for bodies with cracks and thin cuttings, Probl. Mashinostr. Nadezhn. Mash., 2006, no. 5, pp. 37–41.

    Google Scholar 

  11. Hadj Meliani, M., Pluvinage, G., and Matvienko, Yu.G., Corrosion defect assessment on pipes using limit analysis and notch fracture mechanics, Eng. Failure Anal., 2011, vol. 18, pp. 271–283.

    Article  Google Scholar 

  12. Matvienko, Yu.G. and Pochinkov, R.A., Effect of nonsingular components of Tf-stresses onto plastic deformation zones near the opening mode crack top, Deform. Razrush. Mater., 2012, no. 3, pp. 6–14.

    Google Scholar 

  13. Chernyatin, A.S., Matvienko, Yu.G., and Razumovsk, I.A., A computational tool for estimating stress fields along a surface crack front, Fatigue Fracture Eng. Mater. Struct., 2015, vol. 38, pp. 180–189.

    Article  Google Scholar 

  14. Chernyatin, A.S., Matvienko, Yu.G., and Razumovsky, I.A., Combining experimental and numerical analysis to estimate stress fields along the surface crack front, Frattura ed Integrit Strutturale, 2013, vol. 25, pp. 15–19.

    Google Scholar 

  15. Matvienko, Yu.G., Fracture mechanics approaches in the analysis of strains and fractures of bodies with notches and scotches, J. Mach. Manuf. Reliab., 2008, vol. 37, no. 5, p. 469.

    Article  Google Scholar 

  16. Matvienko, Yu.G., Approaches of fracture mechanics to analysis cut-type tolerance defects, Probl. Prochn., 2010, no. 1, pp. 80–87.

    Google Scholar 

  17. Matvienko, Yu.G., Two approaches to taking nonsingular T-stresses into account in the criteria of fracture mechanics for bodies with notches, J. Mach. Manuf. Reliab., 2011, vol. 40, no. 5, p. 494.

    Article  Google Scholar 

  18. Matvienko, Yu.G., Nonsingular T-stresses in double parametric fracture mechanics problems, Zavod. Lab., Diagn. Mater., 2012, no. 2, pp. 51–58.

    Google Scholar 

  19. Matvienko, Yu.G., Chernyatin, A.S., and Razumovskii, I.A., Numerical analysis of the components of the three-dimensional non-singular stress field at a mixed-type crack tip, J. Mach. Manuf. Reliab., 2013, vol. 42, no. 4, p. 293.

    Article  Google Scholar 

  20. Matvienko, Yu.G., Two-parameter fracture mechanics in contemporary strength problems, J. Mach. Manuf. Reliab., 2013, vol. 42, no. 5, p. 374.

    Article  Google Scholar 

  21. Matvienko, Yu.G., Imitation simulation for analyzing fracture mechanics parameters of nonstandard samples, Zavod. Lab., Diagn. Mater., 2013, no. 10, pp. 50–56.

    Google Scholar 

  22. Matvienko, Yu.G., Modeling and fracture criteria in current problems of strength, survivability and machine safety, J. Mach. Manuf. Reliab., 2014, vol. 43, no. 3, p. 242.

    Article  Google Scholar 

  23. Matvienko, Yu.G., Maximum average tangential stress criterion for prediction of the crack path, Int. J. Fracture, 2012, vol. 176, pp. 113–118.

    Article  Google Scholar 

  24. Matvienko, Yu.G., Analysis of permissible dimensions of cracklike defects based on a diagram of crack-growth resistance, J. Mach. Manuf. Reliab., 2007, vol. 36, no. 2, p. 199

    Article  MathSciNet  Google Scholar 

  25. Matvienko, Yu.G., Priimak, O.A., and Elksnin, V.V., A technique for evaluating the permissible depth of an extended surface flaw in a pressurized vessel, J. Mach. Manuf. Reliab., 2007, vol. 36, no. 6, p. 542.

    Article  Google Scholar 

  26. Matvienko, Yu.G., Safety factors in structural integrity assessment of components with defects, Int. J. Struct. Integrity, 2013, vol. 4, no. 3.

    Google Scholar 

  27. Waddoups, M.E., Eisenmann, J.R., and Kaminski, B.E., Macroscopic fracture mechanics of advanced composite materials, J. Composite Mater., 1971, vol. 5, no. 4, pp. 446–454.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. G. Matvienko.

Additional information

Original Russian Text © Yu.G. Matvienko, V.V. Konovalov, A.V. Pankov, M.M. Semenova, 2015, published in Problemy Mashinostroeniya i Nadezhnosti Mashin, 2015, No. 6, pp. 42–52.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matvienko, Y.G., Konovalov, V.V., Pankov, A.V. et al. Crack-resistance diagrams of polymer composite materials in tension and compression. J. Mach. Manuf. Reliab. 44, 520–530 (2015). https://doi.org/10.3103/S1052618815060102

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1052618815060102

Keywords

Navigation