Skip to main content
Log in

Optimal control theory as an instrument for elaboration of automotive hybrid powertrains

  • Automation and Control in Manufacturing
  • Published:
Journal of Machinery Manufacture and Reliability Aims and scope Submit manuscript

Abstract

The subject of this paper are essential aspects of development of automotive hybrid powertrains. Instruments for obtaining optimal control of hybrid powertrain have been devised. These instruments were utilized for the comparative assessment of different powertrain topologies with respect to fuel economy and exhaust emissions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pollution of Moscow atmosphere for the first quarter of 2008, Mosekomonitoring Report, 2008.

  2. Revich, B.A., Klimat, kachestvo atmosfernogo vozdukha i zdorov’e moskvichei (Climate, Quality of Atmospheric Air and Health of Moscow Residents), Moscow: Adamant, 2006.

    Google Scholar 

  3. Nagaitsev, M.V., Modern world requirements for cars energy efficiency and ways for its provision in Russia, Zh. Avtomob. Inzh., 2014, part 1, no. 4(87), pp. 32–37; part 2, no. 5(88), pp. 18–24.

    Google Scholar 

  4. de Jager, B., van Keulen, T., and Kessels J., Optimal Control of Hybrid Vehicles, London: Springer-Verlag, 2013.

    Book  Google Scholar 

  5. Kum, D., Peng, H., and Bucknor, N.K., Supervisory control of parallel hybrid electric vehicles for fuel and emission reduction, ASME J. Dynam. Syst., Measurement, Control, 2011, vol. 133, no. 6.

    Google Scholar 

  6. Lin, C.-C., Peng, H., and Grizzle, J.W., Power management strategy for a parallel hybrid electric truck, Proc. 2002 Mediterranean Control Conf., Lisbon, 2002.

    Google Scholar 

  7. Kulikov, I.A., Dynamic programming solutions for control of hybrid electric vehicle, Zh. Avtomob. Inzh., 2010, part 2, no. 4(63), pp. 36–39; part 2, no. 5(64), pp. 22–25.

    Google Scholar 

  8. Boltyanskii, V.G., Matematicheskie metody optimal’nogo upravleniya (Mathematical Methods of Optimal Control), Moscow: Nauka, 1969.

    Google Scholar 

  9. Boltyanskii, V.G., Optimal’noe upravlenie diskretnymi sistemami (Optimal Control for Discrete Systems), Moscow: Nauka, 1973.

    Google Scholar 

  10. Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., et al., Matematicheskaya teoriya optimal’nykh protsessov (Mathematical Theory of Optimal Processes), Moscow: Nauka, 1983.

    MATH  Google Scholar 

  11. Bellman, R. and Dreyfus, S., Applied Dynamical Programming, Princeton Univesity Press, 1962.

    Google Scholar 

  12. Venttsel’, E.S., Elementy Dinamicheskogo Programmirovaniya (Elements of Dynamical Programming), Moscow: Nauka, 1961.

    Google Scholar 

  13. Nikolaenko, A.V., Bakhmutov, S.V., Selifonov, V.V., Pavlushkov, B.E., Filonov, A.I., Blagushko, Ya.V., Baulina, E.E., Kulikov, I.A., et al., RF Patent 2424919, Byull. Izobret., 2011, no. 21.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Kulikov.

Additional information

Original Russian Text © I.A. Kulikov, A.V. Krutashov, A.I. Filonov, S.V. Bakhmutov, 2015, published in Problemy Mashinostroeniya i Nadezhnosti Mashin, 2015, No. 6, pp. 92–99.

The article was translated by the authors.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulikov, I.A., Krutashov, A.V., Filonov, A.I. et al. Optimal control theory as an instrument for elaboration of automotive hybrid powertrains. J. Mach. Manuf. Reliab. 44, 565–571 (2015). https://doi.org/10.3103/S1052618815060072

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1052618815060072

Keywords

Navigation