Skip to main content

Physical Nature of Rail Surface Hardening during Long-Term Operation

Abstract

A comparative quantitative analysis of the physical mechanisms of hardening of rail surface layers after extremely long-term operation is performed. The method is based on the previously established regularities in the formation of structural-phase states and mechanical properties of differentially hardened long-length rails produced by JSC EVRAZ ZSMK at a depth of up to 10 mm in the rail head along the central axis and fillet after the passed tonnage of 1411 million tons. The calculations consider the volume fractions and characteristics of particular substructure types. The increase in the microhardness and hardness of the surface layers of the rails exposed to extremely operation on the experimental ring of the Russian Railways is multifactorial and determined by the superposition of a number of physical mechanisms. The contributions conditioned by the friction of the matrix lattice, intraphase boundaries, dislocation substructure, presence of carbide particles, internal stress fields, solid hardening, and pearlitic component of the steel structure are estimated. The strength of the rail metal depends on the distance to the surface: it increases on approaching the top of the head and does not depend on the analysis direction (along the central axis of the head or along the fillet symmetry axis). The most significant physical mechanisms are established, which ensure high strength properties of the metal of the rail head exposed to extremely long-term operation. In the subsurface layer of the rail head at a depth of 2–10 mm, the most significant physical mechanism is dislocation conditioned by the interaction of moving and stationary dislocations (forest dislocations). In the surface layer of the rail head, the most significant physical mechanism is substructural conditioned by the interaction of dislocations with small-angle boundaries of fragments and subgrains of nanometer polygons. A comparison with the quantitative values of the rail hardening mechanisms after the passed tonnage of 691.8 million tons is performed. It is shown that an increase in the passed tonnage in the range of 691.8–1411 million tons significantly increases the steel strength by 50 or 100%.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.

REFERENCES

  1. Gromov, V.E., Peregudov, O.A., Ivanov, Yu.F., Kono-valov, S.V., and Yur’ev, A.A., Evolyutsiya strukturno-fazovykh sostoyanii metalla rel’sov pri dlitel’noi ekspluatatsii (Evolution of Structural-Phase States of Metal Rails during Long-Term Operation), Novosibirsk: Sib. Otd., Ross. Akad. Nauk, 2017.

  2. Ivanisenko, Yu. and Fecht, H.J., Microstructure modification in the surface layers of railway rails and wheels, Steel Tech., 2008, vol. 3, no. 1, pp. 19–23.

    Google Scholar 

  3. Ivanisenko, Yu., MacLaren, I., Sauvage, X., Valiev, R.Z., and Fecht, H.J., Shear-induced α → γ transformation in nanoscale Fe-C composite, Acta Mater., 2006, vol. 54, no. 6, pp. 1659–1669. https://doi.org/10.1016/J.ACTAMAT.2005.11.034

    CAS  Article  Google Scholar 

  4. Seo, J.-W., Jun, H.-K., Kwon, S.-J., and Lee, D.-H., Rolling contact fatigue and wear of two different rail steels under rolling-sliding contact, Int. J. Fatigue, 2016, vol. 83, no. 2, pp. 184–194. https://doi.org/10.1016/J.IJFATIGUE.2015.10.012

    CAS  Article  Google Scholar 

  5. Lewis, R., Christoforou, P., Wang, W.J., Beagles, A., Burstow, M., and Lewis, S.R., Investigation of the influence of rail hardness on the wear of rail and wheel materials under dry conditions (ICRI wear mapping project), Wear, 2019, vols. 430–431, pp. 383–392. https://doi.org/10.1016/j.wear.2019.05.030

    CAS  Article  Google Scholar 

  6. Skrypnyk, R., Ekh, M., Nielsen, J.C.O., and Palsson, B.A., Prediction of plastic deformation and wear in railway crossings—Comparing the performance of two rail steel grades, Wear, 2019, vols. 428–429, pp. 302–314. https://doi.org/10.1016/j.wear.2019.03.019

    CAS  Article  Google Scholar 

  7. Kim, D., Quagliato, L., Park, D., and Kim, N., Lifetime prediction of linear slide rails based on surface abrasion and rolling contact fatigue-induced damage, Wear, 2019, vols. 420–421, pp. 184–194. https://doi.org/10.1016/j.wear.2018.10.015

    CAS  Article  Google Scholar 

  8. Huang, Y.B., Shi, L.B., Zhao, X.J., Cai, Z.B., Liu, Q.Y., and Wang, W.J., On the formation and damage mechanism of rolling contact fatigue surface cracks of wheel/rail under the dry condition, Wear, 2018, vols. 400–401, pp. 62–73. https://doi.org/10.1016/j.wear.2017.12.020

    CAS  Article  Google Scholar 

  9. Gromov, V.E., Ivanov, Yu.F., Yur’ev, A.A., and Morozov, K.V., Differentsirovanno-zakalennye rel’sy: evolyutsiya struktury i svoistv v protsesse ekspluatatsii (Differentially Hardened Rails: Evolution of Structure and Properties during Operation), Novokuznetsk: Sib. Gos. Ind. Univ., 2017.

  10. Ivanov, Yu.F., Gromov, V.E., Glezer, A.M., Peregudov, O.A., and Morozov, K.V., Nature of the structural degradation rail surfaces during operation, Bull. Russ. Acad. Sci.: Phys., 2016, vol. 80, no. 12, pp. 1483–1488. https://doi.org/10.3103/S1062873816120078

    CAS  Article  Google Scholar 

  11. Kormyshev, V.E., Gromov, V.E., Ivanov, Yu.F., Glezer, A.M., Yuriev, A.A., Semin, A.P., and Sundeev, R.V., Structural phase states and properties of rails after long-term operation, Mater. Lett., 2020, vol. 268, art. ID 127499. https://doi.org/10.1016/j.matlet.2020.127499

    CAS  Article  Google Scholar 

  12. Kormyshev, V.E., Ivanov, Yu.F., Gromov, V.E., Yur’ev, A.A., and Polevoi, E.V., Structure and properties of differentially quenched 100-m rails after an extremely long-term operation, Fundam. Probl. Sovrem. Materialoved., 2019, vol. 16, no. 4, pp. 538–546. https://doi.org/10.25712/ASTU.1811-1416.2019.04.016

    Article  Google Scholar 

  13. Kormyshev, V.E., Polevoi, E.V., Yur’ev, A.A., Gromov, V.E., and Ivanov, Yu.F., The structural formation in differentially-hardened 100-meter-long rails during long-term operation, Steel Transl., 2020, vol. 50, no. 2, pp. 77–83. https://doi.org/10.3103/S0967091220020047

    Article  Google Scholar 

  14. Kormyshev, V.E., Ivanov, Yu.F., Yur’ev, A.A., Polevoi, E.V., Gromov, V.E., and Glezer, A.M., Evolution of structural-phase states and properties of differentially hardened 100-meter rails during extremely long operation. Report 1. Structure and properties of rail steel before operation, Probl. Chern. Metall. Materialoved., 2019, no. 4, pp. 50–56.

  15. Kormyshev, V.E., Gromov, V.E., Ivanov, Yu.F., and Glezer, A.M., Structure of differential hardened rails under severe plastic deformation, Deform. Razrushenie Mater., 2020, no. 8, pp. 16–20. https://doi.org/10.31044/1814-4632-2020-8-16-20

  16. Gol’dshtein, M.I. and Farber, B.M., Dispersionnoe uprochnenie stali (Dispersion Hardening of Steel), Moscow: Metallurgiya, 1979.

  17. Pickering, F.B., Physical Metallurgy and the Design of Steels, London: Applied Science, 1978.

    Google Scholar 

  18. Predvoditelev, A.A., Current state of research of dislocation ensembles, in Problemy sovremennoi kristallografii (Modern Crystallography), Moscow: Nauka, 1975, pp. 262–275.

  19. Friedman, L.H. and Chrzan, D.C., Scaling theory of the hall-petch relation for multilayers, Phys. Rev. Lett., 1998, vol. 81, no. 13, art. ID 2715. https://doi.org/10.1103/PhysRevLett.81.2715

    CAS  Article  Google Scholar 

  20. Morito, S., Nishikawa, J., and Maki, T., Dislocation density within lath martensite in Fe-C and Fe-Ni alloys, ISIJ Int., 2003, vol. 43, no. 9, pp. 1475–1477. https://doi.org/10.2355/isijinternational.43.1475

    CAS  Article  Google Scholar 

  21. Kim, J.G., Enikeev, N.A., Seol, J.B., Abramova, M.M., Karavaeva, M.V., Valiev, R.Z., Park, C.G., and Kim, H.S., Superior strength and multiple strengthening mechanisms in nanocrystalline TWIP steel., Sci. Rep., 2018, vol. 8, art. ID 11200. https://doi.org/10.1038/s41598-018-29632-y

    CAS  Article  Google Scholar 

  22. Ganji, R.S., Karthik, P.S., Rao, K.B.S., and Rajulapati, K.V., Strengthening mechanisms in equiatomic ultrafine grained AlCoCrCuFeNi high-entropy alloy studied by micro- and nanoindentation methods, Acta Mater., 2017, vol. 125, pp. 58–68. https://doi.org/10.1016/j.actamat.2016.11.046

    CAS  Article  Google Scholar 

  23. Morales, E.V., Galeano Alvarez, N.J., Morales, A.M., and Bott, I.S., Precipitation kinetics and their effects on age hardening in an Fe-Mn-Si-Ti martensitic alloy, Mater. Sci. Eng., A, 2012, vol. 534, pp. 176–185. https://doi.org/10.1016/j.msea.2011.11.056

    CAS  Article  Google Scholar 

  24. McLean, D., Mechanical Properties of Metals, Chichester: Wiley, 1962.

    Google Scholar 

  25. Embyri, I.D., Strengthening by dislocations structure, in Strengthening Method in Crystals, Kelly, A. and Nicholson, R.B., Eds., London: Applied Science, 1971, pp. 331–402.

    Google Scholar 

  26. Koneva, N.A. and Kozlov, E.V., Physical nature of the stages of plastic deformation, in Strukturnye urovni plasticheskoi deformatsii i razrusheniya (Structural Levels of Plastic Deformation and Destruction), Panin, V.E., Ed., Novosibirsk: Nauka, 1990, pp. 123–186.

  27. Yao, M.J., Welsch, E., Ponge, D., Haghighat, S.M.H., Sandlobes, S., Choi, P., Herbig, M., Bleskov, I., Hickel, T., Lipinska-Chwalek, M., Shantraj, P., Scheu, C., Zaefferer, S., Gault, B., and Raabe, D., Strengthening and strain hardening mechanisms in a precipitation-hardened high-Mn lightweight steel, Acta Mater., 2017, vol. 140, pp. 258–273. https://doi.org/10.1016/j.actamat.2017.08.049

    CAS  Article  Google Scholar 

  28. Han, Y., Shi, J., Xu, L., Cao, W.Q., and Dong, H., TiC precipitation induced effect on microstructure and mechanical properties in low carbon medium manganese steel, Mater. Sci. Eng., A, 2011, vol. 530, pp. 643–651. https://doi.org/10.1016/j.msea.2011.10.037

    CAS  Article  Google Scholar 

  29. Silva, R.A., Pinto, A.L., Kuznetsov, A., and Bott, I.S., Precipitation and grain size effects on the tensile strain-hardening exponents of an API X80 steel pipe after high-frequency hot-induction bending, Metals, 2018, vol. 8, no. 3, art. ID 168. https://doi.org/10.3390/met8030168

    CAS  Article  Google Scholar 

  30. Morales, E.V., Gallego, J., and Kestenbachz, H.-J., On coherent carbonitride precipitation in commercial microalloyed steels, Philos. Mag. Lett., 2003, vol. 83, no. 2, pp. 79–87. https://doi.org/10.1080/0950083021000056632

    CAS  Article  Google Scholar 

  31. Fine, M.E. and Isheim, D., Origin of copper precipitation strengthening in steel revisited, Scr. Mater., 2005, vol. 53, no. 1, pp. 115–118. https://doi.org/10.1016/j.scriptamat.2005.02.034

    CAS  Article  Google Scholar 

  32. Shtremel’, M.A., Prochnost’ splavov. Chast’ 2. Deformatsiya (Strength of Alloys, Part 2: Deformation), Moscow: Mosk. Inst. Stali Splavov, 1997.

  33. Mott, N.F. and Nabarro, F.R.N., An attempt to estimate the degree of precipitation hardening, with a simple model, Proc. Phys. Soc., 1940, vol. 52, no. 1, pp. 86–93. https://doi.org/10.1088/0959-5309/52/1/312

    CAS  Article  Google Scholar 

  34. Belen’kii, B.Z., Farber, B.M., and Gol’dshtein, M.I., Estimates of strength of low-carbon low-alloy steels according to structural data, Fiz. Met. Metalloved., 1975, vol. 39, no. 3, pp. 403–409.

    Google Scholar 

  35. Huthcinson, B., Hagström, J., Karlsson, O., Lindell, D., Tornberg, M., Lindberg, F., and Thuvander, M., Microstructures and hardness of as-quenched martensites (0.1–0.5% C), Acta Mater., 2011, vol. 59, no. 14, pp. 5845–5858. https://doi.org/10.1016/j.actamat.2011.05.061

    CAS  Article  Google Scholar 

  36. Senkov, O.N., Scott, J.M., Senkova, S.V., Miracle, D.B., and Woodward, C.F., Microstructure and room temperature properties of a high-entropy TaNbHfZrTi-alloy, J. Alloys Compd., 2011, vol. 509, no. 20, pp. 6043–6048. https://doi.org/10.1016/j.jallcom.2011.02.171

    CAS  Article  Google Scholar 

  37. Sieurin, H., Zander, J., and Sandström, R., Modeling solid solution hardening in stainless steels, Mater. Sci. Eng., A, 2006, vol. 415, nos. 1–2, pp. 66–71. https://doi.org/10.1016/j.msea.2005.09.031

    CAS  Article  Google Scholar 

  38. Vöhringer, O. and Macherauch, E., Struktur und mechanische Eigenschaften von Martensit, J. Heat Treat. Mater., 1977, vol. 32, no. 4, pp. 153–168. https://doi.org/10.1515/htm-1977-320401

    Article  Google Scholar 

  39. Prnka, T., Quantitative relationships between the parameters of dispersed precipitates and the mechanical properties of steels, Met. Sci. Heat Treat., 1975, vol. 17, pp. 548–552.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank N.A. Popova for her help in the quantitative calculations of hardening mechanisms.

Funding

The analysis of the structural and phase state of steel was supported by the Russian Foundation for Basic Research, project no. 19-32-60001. The analysis of the hardening mechanisms was supported by the Russian Science Foundation, project no. 19-19-00183.

ADDITIONAL INFORMATION

Authors ORCID ID. A.A. Yur’ev (0000-0003-4403-9006), V.E. Kormyshev (0000-0002-5147-5343), V.E. Gromov (0000-0002-5147-5343), Y.F. Ivanov (0000-0001-8022-7958), Y.A. Shlyarova (0000-0001-5677-1427).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to B. P. Yur’ev, V. E. Kormyshev, V. E. Gromov, Yu. F. Ivanov or Yu. A. Shlyarova.

Additional information

Translated by S. Kuznetsov

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yur’ev, B.P., Kormyshev, V.E., Gromov, V.E. et al. Physical Nature of Rail Surface Hardening during Long-Term Operation. Steel Transl. 51, 859–865 (2021). https://doi.org/10.3103/S0967091221120147

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0967091221120147

Keywords:

  • rails
  • surface layers
  • hardening mechanisms
  • long-term operation
  • structure
  • phase composition
  • rolling surface
  • fillet