Skip to main content

The Influence of Molybdenum and Titanium on Magnetic and Mechanical Properties of Fe–30Cr–16Co (Kh30K16) Powder Hard Magnetic Alloy

Abstract

The regimes of thermal treatment Fe–30Cr–16Co powder alloys have been developed simulating production conditions. The data on magnetic hysteresis properties, phase composition after thermal treatment and mechanical properties during compression tests are presented. The influence of molybdenum and titanium in the amount of 1% on the magnetic and mechanical properties is analyzed.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Kaneko, H., Homma, M., and Nakamura, K., New ductile permanent magnet of Fe–Cr–Co system, AIP Conf. Proc., 1972, vol. 5, no. 1, pp. 1088–1092.

    Article  Google Scholar 

  2. Jin, S., Chin, G., and Wonsiewicz, B., A low cobalt ternary Cr–Co–Fe alloy for telephone receiver magnet use, IEEE Trans. Magn., 1980, vol. 16, no. 1, pp. 139–146.

    Article  Google Scholar 

  3. Artamonov, E.V., Libman, M.A., and Rudanovskii, N.N., Magnetically hard materials for the motors of synchronous hysteresis electric motors, Steel Transl., 2007, vol. 37, no. 6, pp. 547–551.

    Article  Google Scholar 

  4. Korznikov, A.V., Dmitriev, S.V., Korznikova, G.F., et al., The effect of the heat treatment regime on the structure and physical-mechanical properties of a 23X15KT hard magnetic alloy, Russ. Phys. J., 2015, vol. 57, pp. 1308–1312.

    CAS  Article  Google Scholar 

  5. Ivanova, G.V., Shchegoleva, N.N., Serikov, V.V., et al., Structure of a W-enriched phase in Fe–Co–Cr–W–Ga alloys, J. Alloys Compd., 2011, vol. 509, no. 5, pp. 1809–1814.

    CAS  Article  Google Scholar 

  6. Cherednichenko, I.V., Shubakov, V.S., Malinina, R.I., et al., Structure formation of the highly coercive state in Fe–Cr–Co–Mo alloys, Steel Transl., 2010, vol. 40, pp. 93–97.

    Article  Google Scholar 

  7. Akbar, S., Awan, M.S., Aleem, M.A., and Sarwar, M.N. Development of Mo containing Fe–Cr–Co permanent magnets by modified single step thermomagnetic treatment, IEEE Trans. Magn., 2014, vol. 50, no. 8, pp. 1–4.

    CAS  Google Scholar 

  8. Milyaev, I.M., Yusupov, V.S., Ostanin, S.Yu., et al., Magnetic hysteresis and mechanical properties of hard magnetic Fe–27Cr–15Co–2Mo–Si–Ti–V alloy, Inorg. Mater.: Appl. Res., 2018, vol. 9, no. 3, pp. 523–529.

    Article  Google Scholar 

  9. Han, X.H., Bu, S.J., Wu, X., et al., Effects of multi-stage aging on the microstructure, domain structure and magnetic properties of Fe–24Cr–12Co–1.5Si ribbon magnets, J. Alloys Compd., 2017, vol. 694, pp. 103–110.

    CAS  Article  Google Scholar 

  10. Sud’enkov, Yu.V., Sarnatskii, V.M., and Smirnov, I.V., Orientation magnetic phase transition induced by shock loading of the Fe–Cr–Co alloy, Phys. Solid State, 2017, vol. 59, pp. 287–291.

    Article  Google Scholar 

  11. Tao, S., Ahmad, Z., Zhang, P., et al., Enhancement of magnetic and microstructural properties in Fe–Cr–Co–Mo–V–Zr–Y permanent magnetic alloy, J. Magn. Magn. Mater., 2019, vol. 484, pp. 88–94.

    CAS  Article  Google Scholar 

  12. Tao, S., Ahmad, Z., Khan, I.U., et al., Effects of Sm on structural, textural and magnetic properties of Fe–28Cr–20Co–3Mo–2V–2Ti hard magnetic alloy, J. Alloys Compd., 2020, vol. 816, pp. 152–619.

    Google Scholar 

  13. Shatsov, A.A., Ryaposov, I.V., and Kozvonin, V.A., Concentration-Inhomogeneous hard magnetic alloys of the Fe–Cr–Co system with elevated content of cobalt and boron, Met. Sci. Heat Treat., 2017, vol. 59, nos. 1–2, pp. 45–49.

    CAS  Article  Google Scholar 

  14. Alymov, M.I., Ankudinov, A.B., Zelenskii, V. A., et al., The effect of surfactant admixture during milling on pressing, sintering, and magnetic properties of Fe–Cr–Co–Mo–W alloy, Inorg. Mater.: Appl. Res., 2014, vol. 5, no. 5, pp. 530–535.

    Article  Google Scholar 

  15. Ustyukhin, A.S., Alymov, M.I., and Milyaev, I.M., Magnetic hysteresis properties of Fe–26Cr–16Co powder magnetic hard alloys, Pis’ma Mater., 2014, vol. 4, no. 1, pp. 59–61.

    Google Scholar 

  16. Amini Rastabi, R., Ghasemi, A., Tavoosi, M., and Sodaee, T., Magnetic characterization of nanocrystalline Fe80 – xCrxCo20 (15 ≤ x ≤ 35) alloys during milling and subsequent annealing, J. Magn. Magn. Mater., 2016, vol. 416, pp. 174–180.

    Article  Google Scholar 

  17. Generalova, K.N., Ryaposov, I.V., and Shatsov, A.A., Effect of Mo and W additions on the magnetic hysteresis properties of a powder ridge alloy, Met. Sci. Heat Treat., 2020, vol. 61, nos. 9–10, pp. 657–662.

    CAS  Article  Google Scholar 

  18. Ustyukhin, A.S., Zelensky, V.A., Milyaev, I.M., and Ankudinov, A.B., The study of the magnetic properties of Fe–30Cr–(8–16) Co powder hard magnetic alloys, AIP Conf. Proc., 2020, vol. 2315, no. 1, art. ID 040047.

    CAS  Article  Google Scholar 

  19. Mukhamedov, B.O., Ponomareva, A.V., and Abrikosov, I.A., Spinodal decomposition in ternary Fe–Cr–Co system, J. Alloys Compd., 2017, vol. 695, pp. 250–255.

    CAS  Article  Google Scholar 

  20. Kaneko, H., Homma, M., and Minowa, T., Effect of V and V + Ti additions on the structure and properties of Fe–Cr–Co ductile magnet alloys, IEEE Trans. Magn., 1976, vol. 12, no. 6, pp. 977–979.

    Article  Google Scholar 

  21. Szymura, S. and Sojka, L., Thermoanalytical studies on liquidus-solidus gaps and phase transformations of magnetically hard Fe48 – xCr28Co24Six alloy, J. Therm. Anal., 1989, vol. 35, pp. 15–25.

    CAS  Article  Google Scholar 

  22. Malinina, R.I., Shubakov, V.S., Zhukova, E.Kh., and Zhukov, D.G., Heat treatment and properties of plastically deforming, highly coercive iron alloy (30% Cr, 15% Co, 2% W, 1% Mo, and 1% Ti), Steel Transl., 2013, vol. 43, no. 5, pp. 270–273.

    Article  Google Scholar 

  23. Ryaposov, I.V. and Shatsov, A.A., Specific alloying, structure and properties of powdered magnetically hard alloy with improved performance characteristics, Perspekt. Mater., 2009, no. 1, pp. 57–61.

  24. Schoeler, A., Bleck, W., and Link, R., Quasi-in-situ observations of the sintering behavior of molybdenum-alloyed sintered steels, Steel Res. Int., 2000, vol. 71, nos. 1–2, pp. 44–51.

    CAS  Article  Google Scholar 

  25. Unami, S. and Ozaki, Y., Molybdenum hybrid-alloyed steel powder for high fatigue strength sintered parts using mesh-belt sintering furnace, JFE Tech. Rep., 2011, no. 16, pp. 65–70.

  26. Ustyukhin, A.S., Zelensky, V.A., Milyaev, I.M., et al., Effect of sintering temperature on magnetic hysteresis characteristics of powder alloy Fe–30Cr–8Co (wt %), IOP Conf. Ser.: Mater. Sci. Eng., 2020, vol. 848, no. 1, art. ID 012094.

Download references

Funding

This work was supported by the State Assignment no. 075-00328-21-00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. S. Yusupov.

Additional information

Translated by I. Moshkin

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ustyukhin, A.S., Zelenskii, V.A., Milyaev, I.M. et al. The Influence of Molybdenum and Titanium on Magnetic and Mechanical Properties of Fe–30Cr–16Co (Kh30K16) Powder Hard Magnetic Alloy. Steel Transl. 51, 939–944 (2021). https://doi.org/10.3103/S0967091221120135

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0967091221120135

Keywords:

  • Fe–Cr–Co alloys
  • powder metallurgy
  • thermal treatment
  • magnetic properties
  • X-ray phase analysis
  • mechanical properties