Skip to main content

Peculiarities of Exhaust Gases Afterburning in Converter with Application of Two-Tier Oxygen Lance Blowing

Abstract—We perform a theoretical substantiation of the efficiency increase of the converter gas afterburning in the installation supplying two-tier, different impulse oxygen jets, with CO combustion to CO2 in the channel gas flow leaving the reaction zone. We analyze the thermodynamics of the exhaust gases afterburning process in the converter bath when using (for the blowing) the two-tier oxygen lances. When the oxygen gas jets are blown through the nozzles of the upper tier with the flow rate of 10–40% of the total minute consumption, then sufficiently complete afterburning of the carbon monoxide, CO, is not provided. The uneven amount and unorganized output of the CO formed in the reaction zones during the operation, low efficiency of the exhaust stream mixing with the high-velocity gas jets and the far excessive oxygen amount supplied for the afterburning, insufficient mixing of the gas phase components, and low reaction rate are the limiting factors. We show that at providing conditions for the CO afterburning to the \(\frac{{{{P}_{{{\text{C}}{{{\text{O}}}_{{\text{2}}}}}}}}}{{{{P}_{{{\text{CO}}}}}}}\) = 1 ratio of concentration in the gas phase, the exhaust gas temperature in the converter bath might increase from 1800 to 2000 K; furthermore, the thermal effect of the exothermic reaction decreases. The oxygen amount injected for the CO afterburning should respect to the residual carbon content in the metal under the condition of \(V_{{{{{\text{O}}}_{2}}}}^{{{\text{add}}}}\), m3/min ≈ 100[Cres]%. The oxygen excess in the gas phase and significant amount of the neutral gas reduce essentially the coefficient of utilization of the heat released in the facility.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.


  1. Voskoboinikov, V.G., Perkazov, I.M., and Zavidonskii, V.A., Non-straw cast iron processing abroad, in Podgotovka syr’evykh materialov k metallurgicheskomu peredelu i proizvodstvo chuguna (Preparation of Raw Materials for Metallurgical Processing and Production of Cast Iron), Moscow: Chermetinformatsiya, 1986, no. 2.

  2. Grigorovich, K.V., Metallurgy of the 21st century: current state and development directions, Trudy XIV Mezhdunarodnogo kongressa staleplavil’shchikov (Proc. XIV Int. Congr. of Steelmakers), Moscow: Mosk. Inst. Stali Splavov, 2016, pp. 56–65.

  3. Turkdogan, E.T., Technological improvements in injection metallurgy and in metal refining processes in a ladle in the 80s, Trudy konferentsii “Inzhektornaya metallurgiya’86” (Proc. Conf. “Injection Metallurgy’86), Moscow: Metallurgiya, 1990, pp. 10–44.

  4. Takebayshi, T., The characteristics of BOF refining pretreated hot metal, Proc. Int. Oxygen Steelmaking Congr., Washington, DC, 1986, pp. 557–562.

  5. Lyakishev, N.P. and Shalimov, A.G., Sravnitel’naya kharakteristika sostoyaniya kislorodno-konverternogo proizvodstva stali v Rossii i za rubezhom (Comparative Characteristics of the State of Oxygen-Converter Steel Production in Russia and Abroad), Moscow: Eliz, 2000.

  6. Yugov, P.I., The current state of the world practice of converter production and scientific directions of its development in Russia, Chern. Metall., Byull. Nauchno-Tekh. Ekon. Inf., 2001, no. 9, pp. 9–13.

  7. Kruskopf, A. and Visuri, V.-V., A Gibbs energy minimization approach for modeling of chemical reactions in a basic oxygen furnace, Metall. Mater. Trans. B, 2017, vol. 48, no. 6, pp. 3281–3300.

    CAS  Article  Google Scholar 

  8. Baptizmanskii, V.I., Kulikov, V.O., Kitaev, A.T., et al., Operation of 130-t converters equipped with two-tier lances, Chern. Metall., Byull. Nauchno-Tekh. Ekon. Inf., 1974, no. 3, pp. 1–14.

  9. Smoktii, V.V., Lapitskii, V.V., and Belokurov, E.S., Kombinirovannye protsessy vyplavki stali v konverterakh (Combined Processes of Steel Smelting in Converters), Kiev: Tekhnika, 1992.

  10. Osani, H. and Ohmiya, S., Total hot metals pretreatment and BOF operation practice for high purity steelmaking, Proc. First EOS Congr., Düsseldorf, 1993, pp. 41–46.

  11. Protopopov, E.V. and Chernyatevich, A.G., Increase of the efficiency of converter bath refining with exhaust gases afterburning in converter cavity, Izv. Vyssh. Uchebn. Zaved., Chern. Metall., 1996, no. 2, pp. 1–5.

  12. Protopopov, E.V., Lavrik, D.A., Chernyatevich, A.G., and Masterovenko, E.L., Improvement in efficiency of post combustion of off-gases in basic oxygen converters with liquid-phase reduction, Izv. Vyssh. Uchebn. Zaved., Chern. Metall., 2001, no. 6, pp. 13–17.

  13. Protopopov, E.V. and Chernyatevich, A.G., Investigation of oxygen jets interaction with exhaust converter gases, Izv. Vyssh. Uchebn. Zaved., Chern. Metall., 1996, no. 10, pp. 5–9.

  14. Chatterjee, A., On some aspects of supersonic jets of interest in LD steelmaking, Iron Steel Int., 1973, vol. 16, no. 1, pp. 38–40.

    Google Scholar 

  15. Tabata, Y., Marsh, R.C., and Kelly, P., Improvement of BOP steel refining blowing control using wide angle lance nozzles, Proc. AIST Conf. on Steelmaking, Warrendale, PA, 1998, pp. 451–457.

  16. Zhul’kovskii, O.A., Chernyatevich, A.G., and Gress, A.V., Numerical investigation of exhaust gases afterburning in a converter, Izv. Vyssh. Uchebn. Zaved., Chern. Metall., 1993, no. 1, pp. 19–22.

  17. Chernyatevich, A.G., Aizatulov, R.S., and Protopopov, E.V., Combined metal blowing with inert gas delivery from above and through converter bottom, Steel USSR, 1989, vol. 19, no. 5, pp. 202–204.

    Google Scholar 

  18. Normanton, A.S., Davies, M.W., Spenceley, G.D., and Kreijger, P.J., Technical StaancTJoint development of BSC. Hoogovens bath agitation process and scrap enhancement in basic oxygen steelmaking, Proc. AIST Conf. on Steelmaking, Warrendale, PA, 1986, vol. 69, pp. 599–612.

  19. Rymarchyk, N., Post combustion lances in basic oxygen furnace (BOF) operations, Proc. AIST Conf. on Steelmaking, Warrendale, PA, 1998, pp. 445–449.

  20. Somways, N.L., Developments in the North-American iron and steel industry–1994, Iron Steel Eng., 1995, vol. 71, no. 2, pp. D1–D24.

    Google Scholar 

  21. Chernyatevich, A.G. and Protopopov, E.V., Development of tips of double-circuit lances for oxygen converters, Izv. Vyssh. Uchebn. Zaved., Chern. Metall., 1995, no. 12, pp. 13–17.

  22. Elliott, J.F., Gleiser, M., and Ramakrishna, V., Thermochemistry for Steelmaking, Reading, MA: Addison-Wesley, 1963.

    Google Scholar 

  23. Li, Z. and Hanaoka, T., Development of large-point source emission downscale model by estimating the future capacity distribution of the Chinese iron and steel industry up to 2050, Resour., Conserv. Recycl., 2020, vol. 161, art. ID 104853.

    Article  Google Scholar 

  24. De Vos, L., Cnockaert, V., Bellemans, I., Vercruyssen, C., and Verbeken, K., Critical assessment of the applicability of the foaming index to the industrial basic oxygen steelmaking process, Steel Res. Int., 2021, vol. 92, no. 1, art. ID 2000282.

    CAS  Article  Google Scholar 

  25. Yao, L., Zhu, R., Tang, Y., Wei, G., and Dong, K., Effect of furnace gas composition on characteristics of supersonic oxygen jets in the converter steelmaking process, Materials, 2020, vol. 13, no. 15, art. ID 3353.

    CAS  Article  Google Scholar 

  26. Kwon, J.-H., Lee, J.-A., Lee, K.-U., and Han, J.-W., A study on the supersonic jet nozzle to improve of the operating efficiency of the converter process, Korean J. Met. Mater., 2020, vol. 58, no. 8, pp. 550–559.

    CAS  Article  Google Scholar 

  27. Feng, C., Chen, S., Dong, J., Zhu, R., Wei, G., and Dong, K., Influence of preheating temperature on the characteristics of O2 + CO2 jet by mixed injection with a swirling oxygen nozzle, JOM, 2021, vol. 73, no. 10, pp. 2985–2994.

    Article  Google Scholar 

  28. Zhang, B., Chen, K., Wang, R., Liu, C., and Jiang, M., Physical modeling of splashing triggered by the gas jet of an oxygen lance in a converter, Metals, 2019, vol. 9, no. 4, art. ID 409.

    CAS  Article  Google Scholar 

  29. Liu, C., Tang, L., Liu, J., and Tang, Z., A dynamic analytics method based on multistage modeling for a BOF steelmaking process, IEEE Trans. Automa. Sci. Eng., 2019, vol. 16, no. 3, pp. 1097–1109.

    Article  Google Scholar 

Download references


Authors ORCID ID. E.V. Protopopov (0000-0002-7554-2168), M.V. Temlyantsev (0000-0001-7985-5666).

Author information

Authors and Affiliations


Corresponding authors

Correspondence to E. V. Protopopov, M. V. Temlyantsev, N. F. Yakushevich, V. V. Solonenko or S. O. Safonov.

Additional information

Translated by I. Dikhter

About this article

Verify currency and authenticity via CrossMark

Cite this article

Protopopov, E.V., Temlyantsev, M.V., Yakushevich, N.F. et al. Peculiarities of Exhaust Gases Afterburning in Converter with Application of Two-Tier Oxygen Lance Blowing. Steel Transl. 51, 872–878 (2021).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

  • Keywords: converter
  • two-tier lance
  • afterburning of exhaust gases
  • gas jets
  • carbon monoxide
  • enthalpy
  • Gibbs energy