Skip to main content

Reduction of Unscheduled Equipment Downtime during Maintenance and Updating on the Basis of Strength Analysis


This article discusses keeping track of unscheduled downtimes of equipment at AO Vyksa Steel Works in order to reveal bottlenecks in operation of major process equipment and to accumulate data for development of organizational and technical measures to reduce such downtimes. All downtimes are tracked by factory personnel using an automated analysis system of workshop operation. Reliability experts in workshops classified all units into two groups of performances. The first group is the severity of consequences: personnel safety, safety of equipment and ambient environment, production losses, as well as costs of elimination. The second group is probability of occurrence: high, medium, low, and very low. While determining the criticality estimation of equipment units, the most critical failure and the worst variant are considered. Classification of equipment by criticality categories is used for its ranking in terms of reliability. Operability criteria of machine elements are considered, as well as the current existing software of strength analysis. Two variants are selected, which will be used as tools of strength analysis. Unscheduled downtimes of equipment due to destruction of machine elements are considered as an example from the wheel rolling workshop of AO Vyksa Steel Works released from the automated analysis system of workshop operation. The approaches are proposed to apply the selected elements of strength analysis and the equipment elements were exposed to the strength analysis in order to improve their design reliability. The potential economic effect of implementation of strength analysis tools was estimated, which demonstrated reasonability of this innovation approach resulting in reduction of downtimes.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.


  1. Mayrhofer, A., Hartl, F., Rohrhofer, A., and Stohl, K., New condition monitoring applications in steelmaking, Stahl Eisen, 2017, vol. 137, no. 11, pp. 147–156.

    Google Scholar 

  2. Gorbatyuk, S.M., Pashkov, A.N., Morozova, I.G., and Chicheneva, O.N., Technologies for applying Ni–Au coatings to heat sinks of SiC–Al metal matrix composite material, Mater. Today: Proc., 2021, vol. 38, pp. 1889–1893.

    CAS  Article  Google Scholar 

  3. Savel’ev, A.N. and Sever’yanov, S.S., Assessment of units’ performance of CCM technological line, Izv. Vyssh. Uchebn. Zaved., Chern. Metall., 2019, vol. 62, no. 12. pp. 972–978.

    Article  Google Scholar 

  4. Eron’ko, S.P., Danilov, V.L., Kuklev, A.V., Tkachev, M.Yu., Tinyakov, V.V., and Mechik, S.V., Experience of design and industrial application of systems for the driven feed of slag-forming mixtures into the crystallizers of slab CCM, Metallurgist, 2020, vol. 64, nos. 3–4, pp. 214–222.

    CAS  Article  Google Scholar 

  5. Roberov, I.G., Kokhan, L.S., Morozov, Yu.A., and Borisov, A.V., Stamping complex surfaces by rolling, Steel Transl., 2009, vol. 39, no. 1, pp. 11–14.

    Article  Google Scholar 

  6. Zhareken, A.Zh. and Dzhumaliev, A.S., Burning furnace cooling circuit refitting, Gorn. Zh., 2018, no. 5, pp. 34–35.

  7. Kalinenko, Yu.N., Kamenev, A.A., Mit’kin, A.V., and Kireenkov, A.N., Reengineering of roasting machines at pelletizing factory, Gorn. Zh., 2017, no. 5, pp. 67–69.

  8. Gorbatyuk, S.M., Morozova, I.G., and Naumova, M.G., Reindustrialization principles in the heat treatment of die steels, Steel Transl., 2017, vol. 47, no. 5, pp. 308–312.

    Article  Google Scholar 

  9. Gorbatyuk, S.M., Zarapin, A.Yu., and Chichenev, N.A., Reengineering of spiral classifier of Catoca Mining Company (Angola), Gorn. Inf.-Anal. Byull., 2018, no. 2, pp. 215–221.

  10. Nefedov, A.V., Svichkar’, V.V., and Chicheneva, O.N., Revamping of the skip hoist for charging the furnace of the foundry division of the CJSC RIFAR, Stal’, 2020, no. 7, pp. 50‒53.

  11. Koryak, A.V. and Chichenev, N.A., Re-engineering of a running trolley with container in EAF, Stal’, 2020, no. 1, pp. 36–39.

  12. Chichenev, N.A., Re-engineering of the slab-centering unit of a roughing mill stand, Metallurgist, 2018, vol. 62, nos. 7–8, pp. 701–706.

    Article  Google Scholar 

  13. Efremov, D.B., Stepanov, V.M., and Chicheneva, O.N., Modernization of the mechanism for rapid pressing of rolls of the rolling stand of the DUO mill 2800 of Ural Steel JSC, Stal’, 2020, no. 8, pp. 44–47.

  14. Masini, R. and Lainati, A., Latest bar mill technology, Millenium Steel, 2005, no. 7, pp. 216–227.

  15. Thome, R. and Harste, K., Principles of billet soft-reduction and consequences for continuous casting, ISIJ Int., 2006, vol. 46, no. 12, pp. 1839–1844.

    CAS  Article  Google Scholar 

  16. Rumyantsev, M.I., Some approaches to improve the resource efficiency of production of flat rolled steel, CIS Iron Steel Rev., 2016, vol. 12, pp. 32–36.

    Article  Google Scholar 

  17. Bruyaka, V.A., Fokin, V.G., Soldusova, E.A., Glazunova, N.A., and Adeyanov, I.E., Inzhenernyi analiz v ANSYS Workbench: Uchebnoe posobie (Engineering Analysis in ANSYS Workbench: Manual), Samara: Samar. Gos. Tekh. Univ., 2010.

  18. Kaplun, A.B., Morozov, E.M., and Olfer’eva, M.A., ANSYS v rukakh inzhenera: Prakticheskoe rukovodstvo (ANSYS for Engineers: Practical Handbook), Moscow: Editorial URSS, 2003.

  19. Zhidkov, A.V., Primenenie sistemy ANSYS k resheniyu zadach geometricheskogo i konechno-elementnogo modelirovaniya (Application of ANSYS System to Solve the Problems of Geometric and Finite Element Modeling), Nizhny Novgorod: Nizhegorod. Gos. Univ. im. N.I. Lobachevskogo, 2006, 115 p. (In Russ.).

  20. APM FEM. Sistema prochnostnogo analiza dlya KOMPAS-3D. Versiya dlya KOMPAS-3D V16. Rukovodstvo pol’zovatelya (APM FEM. Strength Analysis System for COMPASS-3D. Version for COMPASS-3D V16: User Manual), Korolev: APM, 2015.

  21. Snitko, S.A., Yakovchenko, A.V., and Gorbatyuk, S.M., Accounting method for residual technological stresses in modeling the stress-deformed state of a railway wheel disk: Part 1, Izv. Vyssh. Uchebn. Zaved., Chern. Metall., 2021, vol. 64, no. 5, pp. 337–344.

    Article  Google Scholar 

  22. Ganin, N.B., Proektirovanie i prochnostnoi raschet v sisteme KOMPAS-3D V13: Uchebnoe posobie (Design and Strength Calculation in COMPASS-3D V13 System: Manual), Moscow: DMK Press, 2011.

  23. Eron’ko, S.P., Danilov, V.L., Tkachev, M.Yu., Tinyakov, V.V., and Ponomareva, E.A., Model studies and modernization of a manipulator for tapping spout replacement in continuous steel casting, Metallurgist, 2020, vol. 64, nos. 3–4, pp. 301–308.

    CAS  Article  Google Scholar 

  24. Kudashov D.V., Martin U., Heilmaier M., and Oettel H., Creep behavior of ultrafine-grained oxide dispersion strengthened copper prepared by cryomilling, Mater. Sci. Eng., A, 2004, vols. 387–389, pp. 639–642.

    CAS  Article  Google Scholar 

  25. Gruner, W., Kudashov, D.V., and Martin, U., Determination of oxygen species in mechanically alloyed oxide dispersion strengthened copper, Powder Metall., 2002, vol. 45, no. 4, pp. 301–306.

    CAS  Article  Google Scholar 

  26. Kudashov, D.V., Aksenov, A.A., Klemm, V., Martin, U., Oettel, H., Portnoy, V.K., and Zolotorevskii, V.S., Microstructure formations in copper-silicon carbide composites during mechanical alloying in a planetary activator, Materialwiss. Werkstofftech., 2020, vol. 31, no. 12, pp. 1048–1055.<1048::AID-MAWE1048>3.0.CO;2-D

    Article  Google Scholar 

  27. Samusev, S.V., Lyuskin, A.V., Romantsov, A.I., Zhigunov, K.L., and Fortunatov, A.N., Deformation region in a stepwise-shaping press at OAO Chelyabinskii Truboprokatnyi Zavod, Steel Transl., 2014, vol. 44, no. 3, pp. 196–198.

    Article  Google Scholar 

  28. Samusev, S.V., Lyuskin, A.V., Romantsov, A.I., Zhigunov, K.L., and Fortunatov, A.N., Calculation of tool parameters for standardized welded-pipe groups in edge-bending presses, Izv. Vyssh. Uchebn. Zaved., Chern. Metall., 2013, vol. 56, no. 5, pp. 20–22.

    Article  Google Scholar 

  29. El-Sayed, T.A. and Algash, Y.A., Flexural behavior of ultra-high performance geopolymer RC beams reinforced with GFRP bars, Case Stud. Constr. Mater., 2021, vol. 15, art. ID e00604.

    Article  Google Scholar 

  30. Alshoaibi, A.M., Computational simulation of 3D fatigue crack growth under mixed-mode loading, Appl. Sci., 2021, vol. 11, no. 13, art. ID 5953.

    CAS  Article  Google Scholar 

  31. Papukchiev, A. and Yang, Z., Application of the coupled code ATHLET-ANSYS CFX for the simulation of the flow mixing inside the ROCOM test facility, Prog. Nucl. Energy, 2021, vol. 137, art. ID 103785.

    CAS  Article  Google Scholar 

  32. Instruktsiya I.20-440.8. Poryadok provedeniya analiza vidov, posledstvii i kritichnosti otkazov (Instruction I.20-440.8. Procedure for Analyzing Types, Consequences and Criticality of Failures), Vyksa: Vyks. Met. Zavod, 2019.

  33. Vasil’ev, V.A., Kalandarishvili, Sh.N., Novikov, V.A., and Odinokov, S.A., Upravlenie kachestvom i sertifikatsiya: Uchebnoe posobie (Quality Management and Certification: Manual), Moscow: Intermet Inzhiniring, 2002.

  34. Grodzenskii, S.Ya., Upravlenie kachestvom: Uchebnik (Quality Management: Manual), Moscow: Prospekt, 2017.

  35. Chagina, A.V. and Bol’shakov, V.P., 3D-modelirovanie v KOMPAS-3D versii v17 i vyshe: Uchebnoe posobie (3D Modeling in COMPASS-3D of Versions v17 and Higher: Manual), St. Petersburg: Piter, 2021.

  36. Bilalov, R.A. and Smetannikov, O.Yu., Numerical investigation of fluid dynamics phenomena in external gear pump, Vychisl. Mekh. Sploshnykh Sred, 2021, vol. 13, no. 4, pp. 471–480.

    Article  Google Scholar 

  37. Muszynski, Z. and Rybak, J., Evaluation of terrestrial laser scanner accuracy in the control of hydrotechnical structures, Stud. Geotech. Mech., 2017, vol. 39, no. 4, pp. 45–57.

    Article  Google Scholar 

  38. Rybak, J., Baca, M., and Zyrek, T., Practical aspects of tubular pile axial capacity testing, Proc. Int. Multidisciplinary Sci. GeoConference “Surveying Geology and Mining Ecology Management (SGEM),” Albena, 2015, vol. 2, no. 1, pp. 549–554.

  39. Anghel, C., Gupta, K., and Jen, T.C., Analysis and optimization of surface quality of stainless steel miniature gears manufactured by CO2 laser cutting, Optik, 2020, vol. 203, art. ID 164049.

    CAS  Article  Google Scholar 

Download references


This article includes the materials from the final qualification work by S.I. Bespalov, graduate of MISiS.

Author information

Authors and Affiliations


Corresponding authors

Correspondence to N. A. Chichenev, S. M. Gorbatyuk, T. Yu. Gorovaya or A. N. Fortunatov.

Additional information

Translated by I. Moshkin

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chichenev, N.A., Gorbatyuk, S.M., Gorovaya, T.Y. et al. Reduction of Unscheduled Equipment Downtime during Maintenance and Updating on the Basis of Strength Analysis. Steel Transl. 51, 866–871 (2021).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • metallurgical production
  • unscheduled equipment downtimes
  • causes of equipment failures
  • failure criticality
  • strength analysis