Skip to main content

Wasteless Joint Processing of Ladle Furnace and Electric Arc Furnace Slags

Abstract

The urgent problem regarding the depletion of mineral resources in ferrous metallurgy can be efficiently solved by a complex reuse of man-caused waste products. Such wastes are mostly presented by electric arc furnace (EAF) slag and ladle furnace (LF) slag. These two kinds of slag are not completely utilized. The residues of these slags are stored in dumps of enterprises and thereby pollute the environment. However, the residues of EAF and LF slags can be converted into valuable industrial products by interaction between the slag components. This paper presents the studies concerning joint wasteless processing of EAF and LF slags with the obtaining of Portland cement clinker and pig iron. Description of the disadvantages of industrial methods for processing these slags is considered, and the relevance of ladle slag processing is shown. The mathematical simulation results of slag fluidity, depending on the composition, are presented, which are based on real investigations, as well as its described experimental technique. The chemical composition of the charge mixtures making it possible to process these slags with limestone roasting wastes into complete extent with no residue has been determined. Such processing provides the quality of produced cast iron and Portland cement clinker to meet the requirements of normative documents. Results for measuring the viscosity of different slag compositions, a description of the obtained slag phases, as well as its final temperature mode, are presented. The results of experimental-industrial tests performed for the developed processing technology are considered, and complete flow chart involving the use of tilt rotary furnaces is presented.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. 1

    Demin, B.L., Sorokin, Yu.V., and Zimin, A.I., Processing metallic-slag materials, Steel Transl., 2000, vol. 30, no. 11, pp. 61–64.

    Google Scholar 

  2. 2

    Smirnov, L.A., Sorokin, Yu.V., Demin, B.L., et al., Modern technologies and equipment for the processing and use of industrial wastes of metallurgical production, Trudy Mezhdunarodnogo kongressa “Fundamental’nye osnovy tekhnologii pererabotki i utilizatsii tekhnogennykh otkhodov (TEKHNOGEN-2017)” (Proc. Int. Congr. “Fundamental Basics of Technologies for Technogenic Waste (TECHNOGEN-2017)”), Yekaterinburg: Ural. Otd., Ross. Akad. Nauk, 2017, pp. 29–33.

  3. 3

    Gudim, Yu.A., Golubev, A.A., Ovchinnikov, S.G., and Zinurov, I.Yu., Waste-free processing of steel-smelting slag, Steel Transl., 2009, vol. 39, no. 7, pp. 612–614.

    Article  Google Scholar 

  4. 4

    Egiazar’yan, D.K., Shamanov, A.N., Sheshukov, O.Yu., et al., Analysis of the refining properties and viscosity of ladle furnace slag, Trudy 72-i Mezhdunarodnoi nauchno-tekhnicheskoi konferentsii “Aktual’nye problemy sovremannoi nauki, tekhniki i obrazovaniya” (Proc. 72nd Int. Sci.-Tech. Conf. “Actual Problems of Modern Science, Technics and Education”), Magnitogorsk, 2014, vol. 1, pp. 180–185.

  5. 5

    Ufimtsev, V.M. and Korobeinikov, L.A., Slags in concrete: new possibilities, Tekhnol. Betonov, 2014, no. 6, pp. 50–53.

  6. 6

    Klachkov, A.A., Krasil’nikov, V.O., Zuev, M.V., et al., Advanced technologies for EAF lining operation on the example of EAF-135 of OJSC Seversky Pipe Plant, Nov. Ogneupory, 2012, no. 3, pp. 99–104.

  7. 7

    Aksenova, V.V. and Safonov, V.M., Balance of slag-metal system before tapping from EAF-160, Materialy 13-i Vserossiiskoi nauchno-prakticheskoi konferentsii s mezhdunarodnym uchastiem “Sovremennye problemy gorno-metallurgicheskogo kompleksa. Nauka i proizvodstvo,” 23–25 noyabrya 2016 g. (Proc. 13th Int. Russ. Sci.- Pract. Conf. “Modern Problems of Mining and Metallurgical Complex: Science and Industry,” November 23–25, 2016), Staryi Oskol, 2016, vol. 2, pp. 15–18.

  8. 8

    Song, Q., Shen, B., and Zhou, Z., Effect of blast furnace slag and steel slag on cement strength, pore structure and autoclave expansion, Adv. Mater. Res., 2011, vols. 168–170, pp. 17–20. https://doi.org/10.4028/www.scientific.net/AMR.168-170.17

    CAS  Article  Google Scholar 

  9. 9

    Skaf, M., Manso, M.J., Aragón, Á., Fuente-Alonso, J.A., and Ortega-López, V., EAF slag in asphalt mixes: a brief review of its possible re-use, Resour., Conserv. Recycl., 2017, vol. 120, pp. 176–185. https://doi.org/10.1016/j.resconrec.2016.12.009

    Article  Google Scholar 

  10. 10

    Abu-Eishah, S., El-Dieb, A., and Bedir, M., Performance of concrete mixtures made with electric arc furnace (EAF) steel slag aggregate produced in the Arabian Gulf region, Constr. Build. Mater., 2012, vol. 34, pp. 249–256. https://doi.org/10.1016/j.conbuildmat.2012.02.012

    Article  Google Scholar 

  11. 11

    Tsakiridis, P.E., Papadimitriou, G.D., Tsivilis, S., and Koroneos, C., Utilization of steel slag for Portland cement clinker production, J. Hazard. Mater., 2008, vol. 152, no. 2, pp. 805–811. https://doi.org/10.1016/j.jhazmat.2007.07.093

    CAS  Article  Google Scholar 

  12. 12

    Santamaría, A., Roji, E., Skaf, M., Marcos, I., and González, J.J., The use of steelmaking slags and fly ash in structural mortars, Constr. Build. Mater., 2016, vol. 106, pp. 364–373. https://doi.org/10.1016/j.conbuildmat.2015.12.121

    Article  Google Scholar 

  13. 13

    Manso, J.M., González, J., and Polanco, J.A., Electric arc furnace slag in concrete, J. Mater. Civil Eng., 2004, vol. 16, no. 6, pp. 639–645. https://doi.org/10.1061/(ASCE)0899-1561(2004)16:6(639)

    CAS  Article  Google Scholar 

  14. 14

    Sheshukov, O.Yu., Mikheenkov, M.A., Egiazaryan, D.K., Ovchinnikova, L.A., and Lobanov, D.A., Chemical stabilization features of ladle furnace slag in ferrous metallurgy, Proc. Int. Conf. with Elements of School for Young Scientists on Recycling and Utilization of Technogenic Formations “TECHNOGEN-2017,” Yekaterinburg, pp. 59–64. https://doi.org/10.18502/kms.v2i2.947

  15. 15

    Mikheenkov, M.A., Sheshukov, O.Yu., and Lobanov, D.A., Slag technogenic formations as a material for the production of silicate products and pig iron, Mashinostroenie, 2018, vol. 6, no. 1, pp. 46–51.

    Google Scholar 

  16. 16

    Lobanov, D.A., Mikheenkov, M.A., Sheshukov, O.Yu., et al., Ferrous metallurgical slag formation and improving the technology of metallurgical treatment and slag complex processing, Materialy XV Mezhdunarodnogo kongressa staleplavil’shchikov posvyashchennogo 100-letiyu Natsional’nogo Issledovatel’skogo Tekhnologicheskogo Universiteta “MISiS” i 380-letiyu Rossiiakoi metallurgii (Proc. XV Int. Congr. of Steelmakers Dedicated to the 100th Anniversary of National Research Technological University (MISiS) and to the 380th Anniversary of Russian Metallurgy) Tula: PrintAP, 2018, pp. 462–467.

  17. 17

    Pontikes, Y., Jones, P.T., Geysen, D., and Blanpain, B., Options to prevent dicalcium silicate-driven disintegration of stainless steel slags, Arch. Metall. Mater., 2010, vol. 55, no. 4, pp. 1169–1172. https://doi.org/10.2478/v10172-010-0020-6

    CAS  Article  Google Scholar 

  18. 18

    Shi, C., Characteristics and cementitious properties of ladle slag fines from steel production, Cem. Concr. Res., 2002, vol. 32, no. 3, pp. 459–462. https://doi.org/10.1016/S0008-8846(01)00707-4

    CAS  Article  Google Scholar 

  19. 19

    Skaf, M., Ortega-López, V., Fuente-Alonso, J.A., Santamaría, A., and Manso, J.M., Ladle furnace slag in asphalt mixes, Constr. Build. Mater., 2016, vol. 122, pp. 488–495. https://doi.org/10.1016/j.conbuildmat.2016.06.085

    Article  Google Scholar 

  20. 20

    Menad, N., Kanari, N., and Save, M., Recovery of high grade iron com pounds from LD slag by enhanced magnetic separation techniques, Int. J. Miner. Process., 2014, vol. 126, pp. 1–9. https://doi.org/10.1016/j.minpro.2013.11.001

    CAS  Article  Google Scholar 

  21. 21

    Artioli, G. and Bullard, J.W., Cement hydration: the role of adsorption and crystal growth, Cryst. Res. Technol., 2013, vol. 48, no. 10, pp. 903–918. https://doi.org/10.1002/crat.201200713

    CAS  Article  Google Scholar 

  22. 22

    Sheshukov, O.Yu., Mikheenkov, M.A., and Nekrasov, I.V., Voprosy utilizatsii rafinirovochnykh shlakov staleplavil’nogo proizvodstva (Refining Slag Utilization: Monograph), Yekaterinburg: Ural. Fed. Univ., 2017.

  23. 23

    Novikov, V.K. and Nevidimov, V.N., Polimernaya priroda rasplavlennykh shlakov (Polymer Nature of Molten Slags), Yekaterinburg: Ural. Gos. Tekh. Univ.-Ural. Politekh. Inst., 2006.

  24. 24

    Rotary furnace, Ural-Olovo Company. https://ural-olovo.ru/projects/rotornaya-pech/rotornaya-pech/. Cited December 14, 2020.

Download references

Funding

The work has been performed according to the State assignment for the Institute of Metallurgy of the Ural Branch of the Russian Academy of Sciences.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to O. Yu. Sheshukov, D. K. Egiazar’yan or D. A. Lobanov.

Additional information

Translated by O. Polyakov

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sheshukov, O.Y., Egiazar’yan, D.K. & Lobanov, D.A. Wasteless Joint Processing of Ladle Furnace and Electric Arc Furnace Slags. Steel Transl. 51, 156–162 (2021). https://doi.org/10.3103/S0967091221030116

Download citation

Keywords:

  • ladle furnace slag
  • electric arc furnace slag
  • Portland cement clinker
  • cast iron
  • chemical composition
  • phase composition
  • man-caused formations