Advertisement

Steel in Translation

, Volume 47, Issue 8, pp 505–516 | Cite as

Thermal physics as the basis for energy and resource conservation in steelmaking

Article

Abstract

This article outlines improvements in metallurgical technology achieved on the basis of the integration of thermal physics and information science by the Ural school of specialists in metallurgy and thermal physics. In recent years, mathematical modeling, combined with physical modeling, has significantly reduced the optimization time in the thermal design and debugging of new technologies and equipment. Sintering machines have been modernized by introducing automatic control of the thermal and gas-dynamic processes and by designing new ignition hearths. These measures, besides improving heat and mass transfer, have boosted the performance of sintering plants in Russia and elsewhere, while reducing their environmental impact. In pellet roasting, a refined gas-flow system has been organized, and the gas lines have been reconstructed. As a result, the productivity has increased by 10–17%, with 8–15% decrease in the fuel consumption. The losses of gas after purification have fallen by 50–58%. Roasting machines in Russia, Brazil, and Iran have been reconstructed. In recent years, software has been developed for blast furnaces and introduced at Russia’s largest steelworks: OAO Magnitogorskii Metallurgicheskii Kombinat. In blast furnaces, new air heaters for the blast produce temperatures of 1300°C or more by means of furnace gas and air, without added natural gas. In addition, systems processing metallurgical liquid slag at rates of 3–15 t/min and producing granulated slag at a rate of 0.66–2.0 million t/yr have been built at Russian, Ukrainian, Indian, and Chinese steel plants. A system is also operating successfully at the Norilsk Nickel plant. The thermal conditions in heating furnaces and equipment of various types have been improved on the basis of mathematical simulation of thermophysical processes by means of a dynamic zonal–point model of radiant and complex heat transfer. This method performs well in practice. In recent years, new furnace designs have been developed, and hundreds of heating furnaces have been modernized. Optimal thermal organization has significantly reduced fuel consumption, improved heating of the metal, and resulted in higher quality of the heat-treated product.

Keywords

mathematical modeling sinter pellets blast furnaces air heaters liquid slag heating systems optimal organization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Grum-Grzhimailo V.E. Plamennye pechi (Combustion Furnaces), in 3 vols., Moscow: Teplotekh. Inst. im. V.I. Grinevetskogo i K.V. Kirsha, 1925.Google Scholar
  2. 2.
    Shvydkii, V.S., Ladygichev, M.G., and Shavrin, V.S., Matematicheskie metody teplofiziki. uchebnoe posobie (Mathematical Methods of Thermophysics: Manual), Moscow: Mashinostroenie, 2005.Google Scholar
  3. 3.
    Spirin, N.A., Shvydkii, V.S., Lobanov, V.I., and Lavrov, V.V., Vvedenie v sistemnyi analiz teplofizicheskikh protsessov metallurgii (Introduction to System Analysis of Thermophysical Processes in Metallurgy), Yekaterinburg: Ural. Gos. Tekh. Univ., 1999.Google Scholar
  4. 4.
    Shvydkii, V.S., Spirin, N.A., Ladygichev, M.G., Yaroshenko, Yu.G., and Gordon, Ya.M., Elementy teorii sistem i chislennye metody modelirovaniya protsessov teplomassoperenosa (Elements of Systems Theory and Numerical Modeling of Heat and Mass Transfer Processes), Moscow: Intermet-Inzhiniring, 1999.Google Scholar
  5. 5.
    Shvydkii, V.S. and Dzyuzer, V.Ya., Metody chislennogo resheniya inzhenernykh zadach (Numerical Solutions of Engineering Problems), Yekaterinburg, 2010.Google Scholar
  6. 6.
    Spirin, N.A., Ipatov, Yu.V., Lobanov, V.I., Krasnobaev, V.A., Lavrov, V.V., Rybolovlev, V.Yu., Shvydkii, V.S., Zagainov, S.A., and Onorin, O.P., Informatsionnye sistemy v metallurgii (Information Systems in Metallurgy), Spirin, N.A., Ed., Yekaterinburg: Ural. Gos. Tekh. Univ., Ural. Politekh. Inst., 2001.Google Scholar
  7. 7.
    Spirin, N.A., Lavrov, V.V., Rybolovlev, V.Yu., et al., Matematicheskoe modelirovanie metallurgicheskikh protsessov v avtomatizirovannoi sisteme upravleniya tekhnologicheskimi protsessami (ASU TP) (Mathematical Modeling of Metallurgical Processes in Auto matic Control System of Technological Processes), Yekaterinburg: Ural. Fed. Univ., 2014.Google Scholar
  8. 8.
    Frolov, Y.A. and Polotsky, L.I., Mathematical threedimensional and dynamic model of sintering process and its use in theoretical and practical purposes, Proc. 6th Int. Congr. on the Science and Technology of Ironmaking (ICSTI), October 14–18, 2012, Rio de Janeiro, 2012, pp. 1447–1459.Google Scholar
  9. 9.
    Yaroshenko, Yu.G., Shvydkii, V.S., Spirin, N.A., and Lavrov, V.V., Steady heat transfer in melt-irrigated blast-furnace zone, Steel Transl., 2016, vol. 46, no. 2, pp. 88–92.CrossRefGoogle Scholar
  10. 10.
    Shvydkii, V.S., Fatkhutdinov, A.R., Devyatykh, E.A., Devyatykh, T.O., and Spirin, N.A., The mathematical design of mine stoves with materials melting, Izv. Vyssh. Uchebn. Zaved., Chern. Metall., 2016, vol. 59, no. 6, pp. 424–430.CrossRefGoogle Scholar
  11. 11.
    Shvydkiy, V.S., Spirin, N.A., and Lavrov, V.V., Mathematical model of layered metallurgical furnaces and units, IOP Conf. Ser.: Mater. Sci. Eng., 2016, vol. 150, p. 012013.CrossRefGoogle Scholar
  12. 12.
    Shvydkiy, V.S., Yaroshenko, Yu.G., Spirin, N.A., and Lavrov, V.V., Gazification of coal dust particles in the blast furnace tuyere apparatus, IOP Conf. Ser.: Mater. Sci. Eng., 2016, vol. 150, p. 012021.CrossRefGoogle Scholar
  13. 13.
    Shvydkii, V.S., Fatkhutdinov, A.R., Devyatykh, E.A., Devyatykh, T.O., and Spirin, N.A., On mathematical modeling of layer metallurgical furnaces and aggregates. Report 1, Izv. Vyssh. Uchebn. Zaved., Chern. Metall., 2016, vol. 59, no. 9, pp. 634–638.CrossRefGoogle Scholar
  14. 14.
    Shvydkii, V.S., Fatkhutdinov, A.R., Devyatykh, E.A., Devyatykh, T.O., and Spirin, N.A., On mathematical modeling of layer metallurgical furnaces and aggregates. Report 2, Izv. Vyssh. Uchebn. Zaved., Chern. Metall., vol. 60, no. 1, pp. 19–23.Google Scholar
  15. 15.
    Rybolovlev, V.Yu., Krasnobaev, A.V., Spirin, N.A., and Lavrov, V.V., Information and simulation systems in metallurgical technology, Steel Transl., 2012, vol. 42, no. 10, pp. 716–720.CrossRefGoogle Scholar
  16. 16.
    Rybolovlev, V.Yu., Krasnobaev, A.V., Spirin, N.A., and Lavrov, V.V., Principles of the development and introduction of an automated process control system for blast-furnace smelting at the Magnitogorsk Metallurgical Combine, Metallurgist, 2015, vol. 59, nos. 7–8, pp. 653–658.CrossRefGoogle Scholar
  17. 17.
    Spirin, N.A., Shvydkii, V.S., and Lavrov, V.V., Modern principles of construction and realization of information- modeling systems in metallurgy (on the example of blast furnace production): achievements and problems, Trudy mezhdunarodnoi nauchno-prakticheskoi konferentsii “Energoeffektivnye i resursosberegayushchie tekhnologii v promyshlennosti” (Proc. Int. Sci.-Pract. Conf. “Energy Efficient and Resource Saving Technologies in the Industry”), Moscow: Mosk. Inst. Stali Splavov, 2016, pp. 166–168.Google Scholar
  18. 18.
    Spirin, N.A., Lavrov, V.V., Rybolovlev, V.Yu., Krasnobaev, A.V., Onorin, O.P., and Kosachenko, I.E., Model’nye sistemy podderzhki prinyatiya reshenii v ASU TP domennoi plavki (Model System of Decision Support in APCS of Blast Furnace), Spirin, N.A., Ed., Yekaterinburg: Ural. Fed. Univ., 2011.Google Scholar
  19. 19.
    Gerasimov, L.K., Druzhinin, G.M., Chistopolov, V.A., et al., RF Patent 2432538, Byull. Izobret., 2011, no. 30.Google Scholar
  20. 20.
    Gerasimov, L.K., Druzhinin, G.M., Chistopolov, V.A., et al., RF Patent 2275435, Byull. Izobret., 2006, no. 12.Google Scholar
  21. 21.
    Vintovkin, A.A., Chistopolov, V.A., Chistopolov, A.V., and Den’gub, V.V., Development and introduction of new ignition furnace for sintering machines, Stal’, 2015, no. 3, pp. 6–8.Google Scholar
  22. 22.
    Gerasimov, L.K., Druzhinin, G.M., Khammatov, I.M., Spirin, N.A., and Chistopolov, V.A., Ignition hearths in sintering machines, Steel Transl., 2010, vol. 40, no. 3, pp. 247–251.CrossRefGoogle Scholar
  23. 23.
    Klein, V.I., Maizel’, G.M., Yaroshenko, Yu.G., and Avdeenko, A.A., Teplotekhnicheskie metody analiza aglomeratsionnogo protsessa (Thermal Analysis of the Agglomeration Process), Yaroshenko, Yu.G., Ed., Yekaterinburg: Ural. Gos. Tekh. Univ., Ural. Politekh. Inst., 2004.Google Scholar
  24. 24.
    Akiyama, Y., Oyama, N., Ivami, Y., et al., Development of gas fuel injection technology in iron ore sintering process (reduction of CO2 emissions with gas fuel injection technology in the sintering machines), Proc. 6th Int. Congr. on the Science and Technology of Ironmaking (ICSTI), October 14–18, 2012, Rio de Janeiro, 2012, pp. 1043–1055.Google Scholar
  25. 25.
    Frolov, Yu.A. and Polotskii, L.I., Three-dimensional mathematical (dynamic) model of the sintering process. Part I, Metallurgist, 2015, vol. 58, nos. 11–12, pp. 1071–1079.CrossRefGoogle Scholar
  26. 26.
    Frolov, Yu.A. and Polotskii, L.I., Three-dimensional mathematical (dynamic) model of the sintering process. Part II, Metallurgist, 2015, vol. 59, no. 1, pp. 9–15.CrossRefGoogle Scholar
  27. 27.
    Frolov, Yu.A., Aglomeratsiya. Tekhnologiya. Teplotekhnika. Upravlenie. Ekologiya (Agglomeration. Technology. Engineering. Management. Ecology), Moscow: Metallurgizdat, 2016.Google Scholar
  28. 28.
    Matyukhin, V.I., Yaroshenko, Yu.G., and Matyukhin, O.V., Reducing dust emission during the sintering of iron ores by using the energy of an acoustic field, Metallurgist, 2016, vol. 60, nos. 3–4, pp. 368–373.CrossRefGoogle Scholar
  29. 29.
    Lobanov, V.I. and Gol’tsev, V.A., Thermotechnical and technological aspects of the use of layered method of natural gas combustion in metallurgical aggregates, Trudy mezhdunarodnoi nauchno-tekhnicheskoi konferentsii “S tvorcheskim naslediem B.I. Kitaeva v XXI vek” (Proc. Int. Sci.-Tech. Conf. “Creative Heritage of B.I. Kitaev in the 21st Century”), Yekaterinburg: Ural. Gos. Tekh. Univ., Ural. Politekh. Inst., 1998, pp. 122–125.Google Scholar
  30. 30.
    Abzalov, V.M., Gorbachev, V.A., Evstyugin, S.N., Klein, V.I., Leont’ev, L.I., and Yur’ev, B.P., Fiziko-khimicheskie i teplotekhnicheskie osnovy proizvodstva zhelezorudnykh okatyshei (Physicochemical and Technological Bases of Iron Ore Pellets Production), Leont’ev, L.I., Ed., Yekaterinburg: Ural. Otd., Ross. Akad. Nauk, 2012.Google Scholar
  31. 31.
    Bokovikov, B.A., Bragin, V.V., Evstyugin, S.N., Malkin, V.M., Naidich, M.I., and Solodukhin, A.A., Teplofizicheskie zakonomernosti termoobrabotki zhelezorudnykh okatyshei na konveiernoi mashine (matematicheskoe modelirovanie) (Thermophysical Regularities of Heat Treatment of Iron Ore Pellets on a Conveyor Machine: Mathematical Modeling), Bokovikov B.A., Ed., Yekaterinburg: Ural. Izd. Poligraf. Tsentrs, 2013.Google Scholar
  32. 32.
    Morales, B., Contini, A., Trindade, L., et al., Proc. 6th Int. Congr. on the Science and Technology of Ironmaking (ICSTI), October 14–18, 2012, Rio de Janeiro, 2012, pp. 61–68.Google Scholar
  33. 33.
    Lobanov, V.I. and Gol’tsev, V.A., Possibilities of using combined method of natural gas combustion during firing of iron ore pellets in OK-228 firing machine, Vestn. Ural. Gos. Tekh. Univ., Ural. Politekh. Inst., 2005, no. 13, pp. 139–152.Google Scholar
  34. 34.
    Bokovikov, B.A., Bragin, V.V., Solodukhin, A.A. and Yaroshenko, Yu.G., Increasing energy efficiency of the roasting conveyor machines by minimizing discharges to chimney, Stal’, 2016, no. 8, pp. 81–84.Google Scholar
  35. 35.
    Abzalov, V.M., Bragin, V.V., Vyatkin, A.A., Evstyugin, S.N., and Leleko, S.N., Development of a new-generation conveyer roasting machine, Steel Transl., 2008, vol. 38, no. 12, pp. 999–1000.CrossRefGoogle Scholar
  36. 36.
    Abzalov, V.M., Evstyugin, S.N., Klein, V.I., et al., RF Patent 2350664, Byull. Izobret., 2009, no. 9.Google Scholar
  37. 37.
    Abzalov, V.M., Bragin, V.V., Bruev, V.P., and Nevolin, V.N., Modernizing the OK-520 roasting machines at Mikhailovskii GOK Joint Stock Company, Steel Transl., 2005, vol. 35, no. 2, pp. 1–2.Google Scholar
  38. 38.
    Abzalov, V.M., Borisenko, B.I., Bragin, V.V., Evstyugin, S.N., Kopot’, N.N., Kretov, S.I., and Nevolin, V.N., Modernizing the OAO Mikhailovskii GOK pelletization plant, Steel Transl., 2006, vol. 36, no. 6, pp. 34–35.Google Scholar
  39. 39.
    Butkarev, A.A., Improving the control of pellet heat treatment in conveyer roasting machines, Steel Transl., 2011, vol. 41, no. 5, pp. 395–399.CrossRefGoogle Scholar
  40. 40.
    Butkarev, A.A., Ashcheulov, V.N., Zhomiruk, P.A., Lazebnaya, Yu.P., and Butkarev, A.P., Boosting the hot-blast temperature in blast furnaces by means of an optimal control system, Steel Transl., 2015, vol. 45, no. 3, pp. 199–206.CrossRefGoogle Scholar
  41. 41.
    Onorin, O.P., Spirin, N.A., Terent’ev, V.L., Gileva, L.Yu., Rybolovlev, V.Yu., Kosachenko, I.E., Lavrov, V.V., and Terent’ev, A.V., Komp’yuternye metody modelirovaniya domennogo protsessa (Computer Modeling of Blast Furnace Process), Spirin, N.A., Ed., Yekaterinburg: Ural. Gos. Tekh. Univ., Ural. Politekh. Inst., 2005.Google Scholar
  42. 42.
    Spirin, N.A., Lavrov, V.V., and Parshakov S.I. Optimizatsiya i identifikatsiya tekhnologicheskikh protsessov v metallurgii (Optimization and Identification of Technological Metallurgical Processes), Spirin, N.A., Ed., Yekaterinburg: Ural. Gos. Tekh. Univ., Ural. Politekh. Inst., 2006.Google Scholar
  43. 43.
    Lavrov, V.V. and Spirin, N.A., Automated information system for analysis and prediction of production situations in blast furnace plant, IOP Conf. Ser.: Mater. Sci. Eng., 2016, vol. 150, p. 012010.CrossRefGoogle Scholar
  44. 44.
    Spirin, N.A., Gileva, L.Y., and Lavrov, V.V., Information modeling system for blast furnace control, IOP Conf. Ser.: Mater. Sci. Eng., 2016, vol. 150, p. 012011.CrossRefGoogle Scholar
  45. 45.
    Spirin, N.A., Onorin, O.P., Shchipanov, K.A., and Lavrov, V.V., Mathematical model and software for control of commissioning blast furnace, IOP Conf. Ser.: Mater. Sci. Eng., 2016, vol. 150, p. 012012.CrossRefGoogle Scholar
  46. 46.
    Spirin, N.A., Lavrov, V.V., Rybolovlev, V.Y., Krasnobaev, A.V., and Pavlov, A.V., Use of contemporary information technology for analyzing the blast furnace process, Metallurgist, 2016, vol. 60, nos. 5–6, pp. 471–477.CrossRefGoogle Scholar
  47. 47.
    Spirin, N.A., Lavrov, V.V., Istomin, A.S., Burykin, A.A., Shchipanov, K.A., Kosachenko, I.E., and Onorin, O.P., Software for the raw-materials management system in blast-furnace smelting, Metallurgist, 2015, vol. 59, nos. 1–2, pp. 104–112.CrossRefGoogle Scholar
  48. 48.
    Shchipanov, K.A., Spirin, N.A., Burykin, A.A., Kosachenko, I.E., and Onorin, O.P., Software for the selection of blast-furnace batch, Steel Transl., 2015, vol. 45, no. 2, pp. 125–129.CrossRefGoogle Scholar
  49. 49.
    Shchipanov, K.A. and Spirin, N.A., RF Inventor’s Certificate no. 2012612255, 2012.Google Scholar
  50. 50.
    Onorin, O.P., Spirin, N.A., Lavrov, V.V., Kosachenko, I.E., and Rybolovlev, V.Yu., Assessing the shape of the viscoplastic iron-ore zone in a blast furnace, Steel Transl., 2013, vol. 43, no. 6, pp. 335–340.CrossRefGoogle Scholar
  51. 51.
    Lavrov, V.V., Spirin, N.A., Burykin, A.A., Onorin, O.P., Kosachenko, I.E., Krasnobaev, A.V., and Rybolovlev, V.Yu., Simulation of heat-transfer processes and assessment of the viscoplastic parameters of iron ore in blast furnaces, Steel Transl., 2013, vol. 43, no. 4, pp. 171–175.CrossRefGoogle Scholar
  52. 52.
    Kushnarev, A.V., Filatov, S.V., Kirichkov, A.A., Filippov, V.V., Gil’manov, M.R., Mikhalev, V.A., Zagainov, S.A., Tleugabulov, B.S., and Sobyanina, O.N., Introduction of the smelting technology of low-silicon iron at NTMK, Chern. Metall., 2011, no. 3, p. 42.CrossRefGoogle Scholar
  53. 53.
    Zagainov, S.A., Filatov, S.V., Sobianina, O.N., and Gordon, Yu.M., Technological solutions’ for intensive production of low silicon hot metal in blast furnace processing vanadium containing titania-magnetite, Proc. 6th Int. Congr. on the Science and Technology of Ironmaking (ICSTI), October 14–18, 2012, Rio de Janeiro, 2012, pp. 1406–1415.Google Scholar
  54. 54.
    Sobyanina, O.N., Filatov, S.V., and Zagainov, S.A., Analysis of titanium reduction in a blast furnace, Steel Transl., 2012, vol. 42, no. 3, pp. 246–248.CrossRefGoogle Scholar
  55. 55.
    Sobyanina, O.N., Filatov, S.V., and Zagainov, S.A., Analysis of the conditions of melt motion in hearth of blast furnace at smelting of titanomagnetites, Izv. Vyssh. Uchebn. Zaved., Chern. Metall., 2008, no. 4, pp. 69–71.Google Scholar
  56. 56.
    Dmitriev, A.N., Vitkina, G.Yu., and Chesnokov, Yu.A., Methodical basis of investigation of influence of the iron ore materials and coke metallurgical characteristics on the blast furnace smelting efficiency, Adv. Mater. Res., 2013, vols. 602–604, pp. 365–375.Google Scholar
  57. 57.
    Chentsov, A.V., Chesnokov, Yu.A., and Shavrin, S.V., Balansovaya logiko-statisticheskaya model’ domennogo protsessa (Balance Logic-Statistical Model of Blast Furnace Process), Yekaterinburg: Ural. Otd., Ross. Akad. Nauk, 2003.Google Scholar
  58. 58.
    Dmitriev, A.N., Matematicheskoe modelirovanie domennogo protsessa (Mathematical Modeling of Blast Furnace Process), Yekaterinburg: Ural. Otd., Ross. Akad. Nauk, 2011.Google Scholar
  59. 59.
    Dmitriev, A.N., Current state, prospects and development of titanium ores base of the Urals, Chern. Metall., 2015, no. 12, pp. 36–40.Google Scholar
  60. 60.
    Dmitriev, A.N., Vitkina, G.Yu., Petukhov, R.V., Kornilkov, S.V., Pelevin, A.E., Fishman, A.Y., Sapozh nikova, T.V., and Shunyaev, K.Y., The characteristic of ores and concentrates of the open society “EVRAZ KGOK,” Adv. Mater. Res., 2014, vols. 834–836, pp. 364–369.Google Scholar
  61. 61.
    Dmitriev, A.N., Sheshukov, O.Yu., Gazaleeva, G.I., Chesnokov, Y.A., Bratygin, E.V., Nekrasov, I.V., and Vitkina, G.Yu., Development of metallurgical processing technology the titanomagnetite concentrate of the Tebinbulak deposit, Appl. Mech. Mater., 2014, vols. 670–671, pp. 283–289.CrossRefGoogle Scholar
  62. 62.
    Dmitriev, A.N., Chesnokov, Yu.A., Chen’, K., Ivanov, O.Yu., and Zolotykh, M.O., Monitoring the wear of the refractory lining in the blast-furnace hearth, Steel Transl., 2013, vol. 43, no. 11, pp. 732–739.CrossRefGoogle Scholar
  63. 63.
    Kalugin, Ya.P., High-temperature shaftless hot stoves for blast furnaces, Proc. 6th Int. Congr. on the Science and Technology of Ironmaking (ICSTI), October 14–18, 2012, Rio de Janeiro, 2012, pp. 2774–2783.Google Scholar
  64. 64.
    Yaroshenko, Yu.G., Gordon, Ya.M., and Khodorovskaya, I.Yu., Energoeffektivnye i resursosberegayushchie tekhnologii chernoi metallurgii (Energy Efficient and Resource Saving Technologies of Ferrous Metallurgy), Yaroshenko, Yu.G., Ed., Yekaterinburg: Ural. Izd. Poligraf. Tsentr, 2012.Google Scholar
  65. 65.
    Prokofiev, B.N., Kalugina, M.Ya., Murzin, Ya.A., Ivlev, S.A., and Subbotin, A.A., Development of hot blast stove design without conventional combustion chamber, Proc. METEC and the 2nd European Steel Technology and Application Days, METEC and 2nd ESTAD, Düsseldorf, 2015.Google Scholar
  66. 66.
    Zainullin, L.A., Bychkov, A.B., Chechenin, G.I., and Greznev, V.G., RF Patent 101445, Byull. Izobret., 2011, no. 2.Google Scholar
  67. 67.
    Zainullin, L.A., Sukhobaevskii, Yu.Ya., and Davydov, A.A., The use of installation for granulation of slag in nonferrous metallurgy, Stal’, 2000, no. 3, pp. 18–20.Google Scholar
  68. 68.
    Zainullin, L.A. and Druzhinin, G.M., The 85th anniversary of the Russian Scientific-Research Institute of Metallurgical Heat Engineering (VNIIMT), Chern. Metall., 2015, no. 4, pp. 3–8.Google Scholar
  69. 69.
    Lisienko, V.G., Sovershenstvovanie i povyshenie effektivnosti energotekhnologii i proizvodstv: (integrirovannyi energo-ekologicheskii analiz) (Improvement and Efficiency Increasing of Energy Technologies and Industries: Integrated Energetic and Environmental Analysis), Moscow: Teplotekhnik, 2010, vol. 1.Google Scholar
  70. 70.
    Lisienko, V.G., Sovershenstvovanie i povyshenie effektivnosti energotekhnologii i proizvodstv: (integrirovannyi energo-ekologicheskii analiz). Tom 2. Kniga 2. Chast’ 1: Analiz rezhimnykh parametrov i konstruktsii v energotekhnologiyakh (Improvement and Efficiency Increasing of Energy Technologies and Industries: Integrated Energetic and Environmental Analysis, Vol. 2, Book 2, Part 1: Analysis of Performance Parameters and Structures of Energy Technologies), Yekaterinburg: Ural. Fed. Univ., 2014.Google Scholar
  71. 71.
    Suchkov A.V., Lisienko, V.G., and Suchkov V.A. Sovershenstvovanie upravleniya mnogomernym tekhnologicheskim ob”ektom na primere domennoi pechi (Improved Control of Multidimensional Technological Object by the Example of Blast Furnaces), Yekaterinburg: Ural. Fed. Univ., 2012.Google Scholar
  72. 72.
    Lisienko, V.G. and Lapteva, A.V., Energy-ecological analysis and assessment of developed metallurgical technologies, 4th European Congr. “Economics and Management of Energy in Industry,” Porto, 2007, no. 4, p. 7.Google Scholar
  73. 73.
    Lisienko, V.G., Solov’eva, N.V., and Trofimova, O.G., Al’ternativnaya metallurgiya: problema legirovaniya, model’nye otsenki effektivnosti (Alternative Metallurgy: Problem of Alloying and Experimental Evaluation of the Effectiveness), Lisienko, V.G., Ed., Moscow: Teplotekhnik, 2007.Google Scholar
  74. 74.
    Lisienko, V.G., Shleimovich, E.M., Ladygichev, M.G., et al., Temperatura: teoriya, praktika, eksperiment. Tom 1, Kniga 1. Metody kontrolya temperatury (Temperature: Theory, Practice, and Experiment, Vol. 1, Book 1: Temperature Control Methods), Lisienko, V.G., Ed., Moscow: Teplotekhnik, 2010.Google Scholar
  75. 75.
    Vokhmyakov, A.M., Kazyaev, M.D., Kazyaev, D.M., Arseev, B.N., and Ryaposov, A.I., Modernization of heating furnaces, Steel Transl., 2009, vol. 39, no. 12, pp. 1064–1067.CrossRefGoogle Scholar
  76. 76.
    Kazyaev, M.D., Vokhmyakov, A.M., Kazyaev, D.M., Ryaposov, A.I., and Spitchenko, D.I., Modernization of tunnel furnace for heating of copper slabs under plastic deformation, Tsvetn. Met. (Moscow), 2011, no. 4, pp. 85–89.Google Scholar
  77. 77.
    Vokhmyakov, A.M., Kazyaev, M.D., and Kazyaev, D.M., Chamber furnace with divided working space, Izv. Vyssh. Uchebn. Zaved., Chern. Metall., 2013, no. 9, pp. 30–33.Google Scholar
  78. 78.
    Kazyaev, M.D., Vokhmyakov, A.M., Kiselev, E.V., and Spitchenko, D.I., Complex external heat transfer at a vertical chamber furnace for long components, Steel Transl., 2015, vol. 45, no. 9, pp. 650–653.CrossRefGoogle Scholar
  79. 79.
    Kazyaev, M.D., Vokhmyakov, A.M., Kiselev, E.V., Spitchenko, D.I., and Kazyaev, D.M., Effect of the structure of lining and type of fuelburn devices on thermal performance of vertical chamber furnace, Trudy VII mezhdunarodnoi nauchno-prakticheskoi konferentsii “Energosberegayushchie tekhnologii v promyshlennosti. Pechnye agregaty. Ekologiya,” posvyashchennoi 150-letiyu velikogo russkogo metallurga V.E. Grum-Grzhimailo, 15–17 oktyabrya 2014 g. (Proc. VII Int. Sci.-Pract. Conf. Dedicated to the 150 Anniversary of the Great Russian Metallurgist V.E. Grum-Grzhimailo “Energy Saving Technologies in the Industry. Furnace Units. Ecology,” October 15–17, 2014), Moscow: Mosk. Inst. Stali Splavov, 2014, pp. 224–235.Google Scholar
  80. 80.
    Druzhinin, G.M., Bartash, M.R., Leont’ev, V.A., and Martynov, A.P., Methodological principles of modernization of constructions and modes of heating and thermal furnaces, Materialy nauchno-tekhnicheskoi konferentsii “Metallurgicheskaya teplotekhnika kak osnova energo- i resursosberezheniya v metallurgii” (Proc. Sci.- Pract. Conf. “Metallurgical Thermal Energetics as the Basis of Energy and Resources Saving Technologies in Metallurgy”), Yekaterinburg: Nauchno-Issled. Inst. Metall. Teplotekh., 2010, pp. 44–49.Google Scholar
  81. 81.
    Bartash, M.R., Druzhinin, G.M., Loshkarev, N.B., and Popov, A.B., New high-speed regenerative gas burner for direct heating of metal in industrial furnaces, Stal’, 2010, no. 3, pp. 125–127.Google Scholar
  82. 82.
    Distergeft, I.M., Druzhinin, G.M., Shcherbinin, V.I., Savel’ev, V.A., Zvonarev, S.V., and Petukhov, V.B., Regenerative heating system for reheating furnaces of rolling and forging production (history of development, theory and practice), in Metallurgicheskaya teplotekhika (Metallurgical Thermal Engineering), Tr. Nats. Metall. Akad. Ukr., Dnepropetrovsk: Nats. Metall. Akad. Ukr., 2002, vol. 5, pp. 44–57.Google Scholar
  83. 83.
    Yaroshenko, Yu.G., Lipunov, Yu.I., Zakharchenko, M.V., Eismondt, K.Yu., and Nekrasova, E.V., An environmentally safe method of thermal strengthening, Steel Transl., 2015, vol. 45, no. 4, pp. 233–236.CrossRefGoogle Scholar
  84. 84.
    Lipunov, Yu.I., Eismondt, K.Yu., Nekrasova, E.V. Zakharchenko, M.V., Yaroshenko, Yu.G., and Abramov, E.V., Water-jet cooling in the thermal strengthening of asymmetric profiles, Steel Transl., 2015, vol. 45, no. 3, pp. 226–230.CrossRefGoogle Scholar
  85. 85.
    Lipunov, Yu.I., Eismondt, K.Yu., Yaroshenko, Yu.G. Zakharchenko, M.V., and Nekrasova, E.V., Thermal hardening of rail lining by jet water cooling, Stal’, 2014, no. 8, pp. 3–8.Google Scholar
  86. 86.
    Zhilyakov, A.Yu., Lipunov, Yu.I., Eismondt, K.Yu., and Yaroshenko, Yu.G., Influence of the quenching technologies on the joint bar’ microstructure, Izv. Vyssh. Uchebn. Zaved., Chern. Metall., 2015, no. 9, pp. 682–687.Google Scholar
  87. 87.
    Zainullin, L.A., Karelin, V.G., Artov, D.A., Epishin, A.Yu., and Spirin, N.A., Drying of coal by a solid heat-transfer medium, Metallurgist, 2017, vol. 60, nos. 9–10, pp. 912–915.CrossRefGoogle Scholar
  88. 88.
    Zainullin, L.A., Epishin, A.Yu., Artov, D.A., Karelin, V.G., and Spirin, N.A., High-temperature carbothermal reduction of siderite ore in an electric arc, Metallurgist, 2017, vol. 60, nos. 11–12, pp. 1135–1138.CrossRefGoogle Scholar
  89. 89.
    Ryazanov, V.T., Khokhlov, V.A., Shul’gin, S.S., and Oganesyan, Yu.M., Experience of modernization of stands for drying of the lining of ladles for pig iron transporting, Stal’, 2015, no. 3, pp. 39–41.Google Scholar
  90. 90.
    Mekhryakov, D.V., Greznev, V.G., Malei, I.V., Petrov, S.V., and Fakhrutdinov, M.Ya., Experience of modernization of metallization installations with MIDREX technology at Oskolsky Electrometallurgical Plant, Stal’, 2015, no. 3, pp. 25–27.Google Scholar
  91. 91.
    Podkovyrkin, E.G., Korshunova, N.G., Bakov, A.V., Sovetkin, V.L., and Matyukhin, V.I., Rotary-jet installations for heat treatment of charge materials of metallurgical processing, Stal’, 2015, no. 3, pp. 98–99.Google Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  1. 1.Yeltsin Ural Federal UniversityYekaterinburgRussia

Personalised recommendations