Steel in Translation

, Volume 47, Issue 8, pp 564–570 | Cite as

Structure formation in wire

  • A. B. Sychkov
  • A. Yu. Stolyarov
  • G. Ya. Kamalova
  • Yu. Yu. Efimova
  • L. Yu. Egorova
  • A. E. Gulin


The microstructure formed in the surface layer of industrially produced steel 70 wire rod (diameter 5.5 mm), wire (diameter 4.2 mm), and thin brass-plated steel 70 wire (diameter 0.933–1.75 mm) is studied. Local surface sections with turbulent structure are identified by means of transmission and scanning electron microscopy and microhardness measurements. Those sections are associated with shear stress forming additional rotary deformation modes. With increase in the deformation, a gradient in the microhardness appears. The hardness is greatest at the surface in sections with anomalous structure. The dynamics of dislocational structure in metal with deformation is investigated. The formation of pearlite colonies in high-carbon steel is studied. The results may be used in determining the limiting deformability of wire rod and wire on drawing.


cold deformation thin wire shear strain turbulent surface sections wire strength microhardness dislocational structure transmission electron microscopy scanning electron microscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Perlin, I.L. and Ermanok, M.Z., Teoriya volocheniya (The Theory of Drawing), Moscow: Metallurgiya, 1971.Google Scholar
  2. 2.
    Fridman, Ya.B., Mekhanicheskie svoistva metallov (Mechanical Properties of Metals), Moscow: Mashinostroenie, 1974, part 2.Google Scholar
  3. 3.
    Kulesha, V.A., Proisvodstvo mikroprovoloki (Production of Microwire), Magnitogorsk: Magnitogorsk. Gos. Tekh. Univ. im. G.I. Nosova, 1999.Google Scholar
  4. 4.
    Terskikh, S.A., Pokachalov, V.V., and Terskikh, D.S., Production of reinforced wire from sorbitized wire rod taking into account the scale effect, in Obrabotka sploshnykh i sloistykh materialov (Processing of Solid and Laminar Materials), Chukin, M.V., Ed., Magnitogorsk: Magnitogorsk. Gos. Tekh. Univ. im. G.I.Nosova, 2008, no. 35, pp. 68–73.Google Scholar
  5. 5.
    Hosoda, K., Asakawa, M., Kajino, S., and Maeda, Y., Effect of die semi-angle and multi-pass drawing on additional shear layer, Wire J., 2008, no. 11, pp. 68–73.Google Scholar
  6. 6.
    Stolyarov, A.Yu. and Kharitonov, V.A., The depth of the layer of additional shear deformation at drawing a thin wire, Stal’, 2012, no. 12, pp. 45–47.Google Scholar
  7. 7.
    Griffiths, B.J., Mechanisms of white layer generation with reference to machining and deformation processes, J. Tribol., 1987, vol. 109, no. 3, pp. 525–530.CrossRefGoogle Scholar
  8. 8.
    Panin, V.E., Kolubaev, A.V., Slosman, A.I., et al., Wear in friction pairs as a problem of physical mesomechanics, Fiz. Mezomech., 2000, vol. 3, no. 1, pp. 67–74.Google Scholar
  9. 9.
    Tarasov, S.Y. and Rubtsov, V.E., Shear instability in the subsurface layer of a material in friction, Phys. Solid State, 2011, vol. 53, no. 2, pp. 358–362.CrossRefGoogle Scholar
  10. 10.
    Kolubaev, A., Tarasov, S., Sizova, O., and Kolubaev, E., Scale-dependent subsurface deformation of metallic materials in sliding, Tribol. Int., 2010, vol. 43, pp. 695–699.CrossRefGoogle Scholar
  11. 11.
    Goldstein, R.V and Alexandrov, S.E., An approach to prediction of microstructure formation near friction surfaces at large plastic strains, Phys. Mesomech., 2015, vol. 18, no. 3, pp. 223–227.CrossRefGoogle Scholar
  12. 12.
    Alexandrov, S. and Mustafa, Y., Singular solutions in viscoplasticity under plane strain conditions, Meccanica, 2013, vol. 48, pp. 2203–2208.CrossRefGoogle Scholar
  13. 13.
    Alexandrov, S., Jeng, Y.-R., and Hwang, Y.-M., Generation of a fine grain layer in the vicinity of frictional interfaces in direct extrusion of AZ31 alloy, J. Manuf. Sci. Eng., 2015, vol. 137, no. 5, pp. 051003–051003-9.CrossRefGoogle Scholar
  14. 14.
    Alexandrov, S., Kuo, S.Y., and Jeng, Y.R., A numerical method for determining the strain rate intensity factor under plane strain conditions, Continuum Mech. Thermodyn., 2016, vol. 28, pp. 977–992.CrossRefGoogle Scholar
  15. 15.
    Sanabria, V., Mueller, S., and Reimers, W., Microstructure evolution of friction boundary layer during extrusion of AA 6060, Proc. Eng., 2014, vol. 81, pp. 586–591.CrossRefGoogle Scholar
  16. 16.
    Starov, R.V., Parusov, V.V., Nesterenko, A.M., et al., The production technology for the of pure steel without nonmetallic inclusions in the complex arc steel-smelting furnace–“furnace-ladle” installation–a grading machine for continuous casting, Materialy mezhdunarodnoi nauchno-tekhnicheskoi konferentsii “Proizvodstvo stali v XXI veke,” Kiev, 15–16 maya 2000 g. (Proc. Int. Sci.-Tech. Conf. “Steel Production in 21 Century,” Kyiv, May 15–16, 2000), Dneprodzerzhinsk, 2000, pp. 167–168.Google Scholar
  17. 17.
    Starov, R.V., Derevyanchenko, I.V., Parusov, V.V., et al., Change in the chemical composition of nonmetallic inclusions at all stages of steel production, Stal’, 2005, no. 1, pp. 79–82.Google Scholar
  18. 18.
    Gubenko, S.I., Transformatsiya nemetallicheskikh vklyuchenii v stali (Transformation of Nonmetallic Inclusions in Steel), Moscow: Metallurgiya, 1991.Google Scholar
  19. 19.
    Gubenko, S.I., Fizika razrusheniya stalei vblizi nemetalicheskikh vklyuchenii (Physics of the Steel Destruction near Nonmetallic Inclusions), Dnepropetrovsk: Sistemnye Tekhnologii, 2014.Google Scholar
  20. 20.
    Parusov, V.V., Sychkov, A.B., and Parusov, E.V., Teoreticheskie i tekhnologicheskie osnovy proizvodstva vysokoeffektivnykh vidov katanki (Theoretical and Technological Basis for Production of Highly-Efficient Wire Rods), Dnepropetrovsk: ART-Press, 2012.Google Scholar
  21. 21.
    Sychkov, A.B., Zhigarev, M.A., Stolyarov, A.Yu., et al., Metallurgicheskie i metallovedcheskie aspekty proizvodstva vysokouglerodistoi katanki (Metallurgical Aspects of Production of High-Carbon Wire Rods), Magnitogorsk: Magnitogorsk. Gos. Tekh. Univ. im. G.I. Nosova, 2014.Google Scholar
  22. 22.
    ISO 14577-2:2002: Metallic Materials—Instrumented Indentation Test for Hardness and Materials Parameters, Geneva: Int. Org. Stand., 2002.Google Scholar
  23. 23.
    Tushinskii, L.I., Bataev, A.A., and Tikhomirova, L.B., Struktura perlita i konstruktivnaya prochnost’ stali (Perlite Structure and Structural Strength of Steel), Novosibirsk: Nauka, 1993.Google Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  • A. B. Sychkov
    • 1
  • A. Yu. Stolyarov
    • 2
  • G. Ya. Kamalova
    • 1
  • Yu. Yu. Efimova
    • 1
  • L. Yu. Egorova
    • 3
  • A. E. Gulin
    • 1
  1. 1.Nosov Magnitogorsk State Technical UniversityMagnitogorskRussia
  2. 2.OOO Spetsial’nye TekhnologiiMagnitogorskRussia
  3. 3.Institute of Metal Physics, Ural BranchRussian Academy of SciencesYekaterinburgRussia

Personalised recommendations