Steel in Translation

, Volume 47, Issue 8, pp 561–563 | Cite as

Correlation of rail structure with the Rayleigh-wave velocity and the coercive force

  • V. V. Murav’ev
  • A. V. Baiteryakov
  • S. V. Len’kov
  • V. A. Zakharov
Article
  • 7 Downloads

Abstract

The velocity of Rayleigh waves is correlated with the depth of the decarburized layer and the hardness of rail steel. With increase in the depth of the decarburized layer and decrease in the hardness, the velocity of Rayleigh waves increases. Conversely, in the same conditions, the coercive force of the rail steel declines. The thickness of the decarburized layer is determined by this method and confirmed by direct measurements.

Keywords

ultrasound Rayleigh waves decarburized layer microhardness rail structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ermolov, I.N. and Lange, Yu.V., Nerazrushayushchii kontrol’: spravochnik. Tom 3. Ul’trazvukovoi kontrol’ (Nondestructive Testing: A Handbook, Vol. 3: Ultrasonic Testing), Klyuev, V.V., Ed., Moscow: Mashinostroenie, 2004.Google Scholar
  2. 2.
    Murav’ev, V.V. and Boyarkin, E.V., Nondestructive testing of the structural-mechanical state of currently produced rails on the basis of the ultrasonic wave velocity, Russ. J. Nondestr. Test., 2003, vol. 39, no. 3, pp. 189–197.CrossRefGoogle Scholar
  3. 3.
    Bobrov, V.T., Bobrov, S.V., and Danilov, V.N., Propagation of pulses of shear elastic SH-polarization waves in a solid layer in a direction orthogonal to its surfaces, Russ. J. Nondestr. Test., 2013, vol. 49, no. 8, pp. 436–445.CrossRefGoogle Scholar
  4. 4.
    Babkin, S.E., The determination of the Poisson ratio for ferromagnetic materials using the EMA method, Russ. J. Nondestr. Test., 2015, vol. 51, no. 5, pp. 303–307.CrossRefGoogle Scholar
  5. 5.
    Murav’eva, O.V., Petrov, K.V., Sokov, M.Yu., and Gabbasova, M.A., The simulation and study of the propagation of the acoustic waves that are radiated by an electromagnetic–acoustic trough-type transducer over the elliptic cross-section of a bar, Russ. J. Nondestr. Test., 2015, vol. 51, no. 7, pp. 400–406.CrossRefGoogle Scholar
  6. 6.
    Ul’yanov, A.I., Zakharov, V.A., and Pospelova, I.G., Coercive force of low-carbon steels during elastic and plastic tensile deformation, Russ. Phys. J., 2015, vol. 58, no. 1, pp. 85–91.CrossRefGoogle Scholar
  7. 7.
    Murav’ev, V.V., Zlobin, D.V., Len’kov, S.V., and Zverev, N.N., An instrument for measuring acoustic wave velocities in metals and alloys, Instrum. Exp. Tech., 2016, vol. 59, no. 3, pp. 476–480.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  • V. V. Murav’ev
    • 1
  • A. V. Baiteryakov
    • 1
  • S. V. Len’kov
    • 2
  • V. A. Zakharov
    • 2
  1. 1.Kalashnikov Izhevsk State Technical UniversityIzhevskRussia
  2. 2.Physicotechnical Institute, Ural BranchRussian Academy of SciencesIzhevskRussia

Personalised recommendations