Steel in Translation

, Volume 47, Issue 8, pp 534–537 | Cite as

Improving the energy efficiency of blast furnaces at PAO NLMK

  • S. V. Filatov
  • S. A. Zagainov
  • L. Yu. Gileva
  • I. F. Kurunov
  • V. N. Titov


Analysis of measures used to reduce energy expenditures shows that methods in which a single parameter is changed are ineffective. Coordinated adjustment of several parameters is required. Theoretical analysis reveals the combinations of parameters with the greatest effect. The influence of the granulometric composition of the sinter on the blast-furnace efficiency is considered in terms of the influence of the mean piece size on the reduction rate and the gas dynamics of the upper furnace region. When the reaction FeO + CO = Fe + CO2 reaches equilibrium, the heat consumption in smelting is reduced by increasing the smelting rate. Analysis of specific approaches to reducing the heat consumption in blast furnaces for the example of PAO Novolipetskii Metallurgicheskii Kombinat (NLMK) indicates the basic measures that decrease heat consumption: optimization of the iron ore by reducing the proportion of the >45 mm fraction; increase in output of the blast furnaces to 75–90 t/day (per m2 of hearth); operation with the highest permissible pressure (in terms of the charging-unit design); increase in hot strength of the coke to 60–62%; pulverized- coal injection at 140 kg/t of hot metal; and optimization of the ore distribution over the furnace radius. Between 2013 and 2016, those measures decreased coke consumption by more than 10 kg/t of hot metal. In addition, the total consumption of carbon fuel was reduced.


blast furnace coke consumption total carbon consumption smelting rate elevated furnace pressure iron oxides reduction rate energy expenditures heat losses batch quality thermal balance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rammer, B., Millner, R., and Boehm, C., Comparing the CO2 emission of different ironmaking rout, Proc. 7th European Coke and Ironmaking Congr.—ECIC, Linz, 2016, pp. 284–291.Google Scholar
  2. 2.
    Schmole, P., The blast furnace—fit for future, Proc. 7th European Coke and Ironmaking Congr.—ECIC, Linz, 2016, pp. 3–12.Google Scholar
  3. 3.
    Tovarovskii, I.G., Protsessy domennoi plavki. Tom 2. Problemy i perspektivy: monografiya (Blast Furnace Processes, Vol. 2: Problems and Perspectives. Monograph), Saarbrucken: LAP Lambert Acad. Publ., 2012.Google Scholar
  4. 4.
    Tovarovskii, I.G., Domennaya plavka: monografiya (Blast Furnace Smelting: Monograph), Dnepropetrovsk: Porogi, 2009.Google Scholar
  5. 5.
    Spirin, N.A., Lavrov, V.V., Rybolovlev, V.Yu., et al., Matematicheskoe modelirovanie metallurgicheskikh protsessov v ASU TP (Mathematical Modeling of Metallurgical Processes in Automated Process Control System), Spirin, N.A., Ed., Yekaterinburg: Ural. Izd.-Poligraf. Tsentr, 2014.Google Scholar
  6. 6.
    Zagainov, S.A., Onorin, O.P., Gileva, L.Yu. Volkov, D.N., and Tleugobulov, B.S., Software for flexible blast-furnace operation, Steel Transl., 2000, vol. 30, no. 9, pp. 9–11.Google Scholar
  7. 7.
    Spirin, N.A., Lavrov, V.V., Rybolovlev, V.Yu., Krasnobaev, A.V., and Onorin, O.P., Model’nye sistemy podderzhki prinyatiya reshenii v ASU TP domennoi plavki (Model Decision Support Systems in the Automated Process Control System of Blast Furnace Smelting), Yekaterinburg: Ural. Fed. Univ., 2011.Google Scholar
  8. 8.
    Filatov, S.V., Zagainov, S.A., Gileva, L.Yu., and Pykhteeva, K.B., Development of the analysis of iron oxide reduction processes, Izv. Vyssh. Uchebn. Zaved., Chern. Metall., 2015, no. 9, pp. 658–661.CrossRefGoogle Scholar
  9. 9.
    Shvartsman, A.A. and Zhukhovitskii, A.A., Nachala fizicheskoi khimii dlya metallurgov (Fundamentals of Physical Chemistry for Metallurgists), Moscow: Metallurgiya, 1991.Google Scholar
  10. 10.
    Shavrin, S.V., Regularities of reduction of iron oxides and modeling of metallurgical processes, in Fizicheskaya khimiya i tekhnologii v metallurgii (Physical Chemistry and Technologies in Metallurgy), Yekaterinburg: Ural. Otd., Ross. Akad. Nauk, 1966, pp. 239–248.Google Scholar
  11. 11.
    Frolov, Yu.A., Ptichnikov, A.G., Barinov, V.Kh., and Gorshkov, N.N., Method of calculating and analyzing the factors that affect the coke consumption and productivity of blast furnaces at the Chelyabinsk Metallurgical Combine, Metallurgist, 2013, vol. 57, nos. 3–4, pp. 183–193.CrossRefGoogle Scholar
  12. 12.
    Tir’on, K., Suvorov, M., and Shmit, L., On integrated approach for pulverized coal fuel blowing into blast furnaces, Trudy mezhdunarodnogo kongressa domenshchikov “Domennoe proizvodstvo–XXI vek” (Proc. Int. Congr. of Blast Furnace Operators “Blast Furnace Industr in 21st Century”), Moscow, 2014, pp. 80–91.Google Scholar
  13. 13.
    Lyalyuk, V.P., Tovarovskii, I.G., Demchuk, D.A., et al., Koksozameshchayushchie tekhnologii v domennoi plavke (Coke-Substituting Technologies in Blast Furnace Smelting), Dnepropetrovsk: Porogi, 2006.Google Scholar
  14. 14.
    Gotlib, A.D., Domennyi protsess (Blast Furnace Process), Moscow: Metallurgiya, 1966.Google Scholar
  15. 15.
    Filatov, S.V., Zagainov, S.A., Gileva, L.Yu., Kurunov, I.F., and Titov, V.N., Influence of elevated pressure on blast-furnace performance, Steel Transl., 2015, vol. 45, no. 4, pp. 275–278.CrossRefGoogle Scholar
  16. 16.
    Mishchenko, I.M. and Kuzin, A.V., Quality of coke and other important factors for ensuring effective smelting of cast iron using pulverized coal, Chern. Metall., 2014, no. 5, pp. 26–32.Google Scholar
  17. 17.
    Kitaev, B.I., Yaroshenko, Yu.G., and Lazarev, B.D., Teploobmen v domennoi pechi (Heat Transfer in Blast Furnace), Moscow: Metallurgiya, 1966.Google Scholar
  18. 18.
    Kitaev, B.I., Timofeev, V.N., Bokovikov, B.A., et al., Teplo- i massoobmen v plotnom sloe (Heat and Mass Transfer in a Dense Layer), Moscow: Metallurgiya, 1972.Google Scholar
  19. 19.
    Kitaev, B.I., Yaroshenko, Yu.G., Sukhanov, E.L., et al., Teplotekhnika domennogo protsessa (Thermal Engineering of Blast Furnace Process), Moscow: Metallurgiya, 1978.Google Scholar
  20. 20.
    Spirin, N.A., Shvydkii, V.S., Lobanov, V.I., and Lavrov, V.V., Vvedenie v sistemnyi analiz teplofizicheskikh protsessov metallurgii (Introduction to the System Analysis of Thermophysical Processes in Metallurgy), Yekaterinburg: Ural. Gos. Tekh. Univ., 1999.Google Scholar
  21. 21.
    Katunin, V.V., Petrakova, T.M., and Ivanova, I.M., Main performance indicators of the Russian ferrous metallurgy in 2015, Chern. Metall., 2016, no. 3, pp. 3–24.Google Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  • S. V. Filatov
    • 1
  • S. A. Zagainov
    • 2
  • L. Yu. Gileva
    • 2
  • I. F. Kurunov
    • 1
  • V. N. Titov
    • 1
  1. 1.PAO Novolipetskii Metallurgicheskii Kombinat (NLMK)LipetskRussia
  2. 2.Yeltsin Ural Federal UniversityYekaterinburgRussia

Personalised recommendations