Ryapolov, A.G. and Botnikov, S.A., Russian electrosmelting and predicted demand for metal scrap, Steel Transl., 2014, vol. 44, no. 1, pp. 47–49.
Article
Google Scholar
Gerasimov, E.Yu., Implrmrntation of balanced system of parameters at Magnitogorsk Metallurgical Plant, Daidzhest-Finansy, 2007, no. 9 (153), pp. 31–39.
Google Scholar
Aksel’rod, L.M., Orzhekh, M.B., and Kushnerev, I.V., RF Patent 2430973, Byull. Izobret., 2010, no. 28.
Google Scholar
Hassan, A.I., Kotel’nikov, G.I., Semin, A.E., and Megahed, G.M., Analysis of steel smelting technology using metallic pellets in iron HBI with higher phosphorus content, Chern. Met., 2015, no. 5 (1001), pp. 64–69.
Google Scholar
Kuznetsov, M.S., Yakushev, E.V., Kulagin, S.A., Kotel’nikov, G.I., Semin, A.E., and Chegeliya, R.K., Effect of the charge composition on the nitrogen content in a metal during steelmaking in an ASF using a solid charge, Russ. Metall. (Engl. Transl.), 2011, vol. 2011, no. 12, pp. 1101–1105.
Article
Google Scholar
Tyutyukov, S.A. and Andreev, A.V., Efficiency of use of prospective materials and technological solution in repair and foundry industry, Agrar. Obraz. Nauka, 2013, no. 4, p. 1.
Google Scholar
Bigeev, V.A., Valiakhmetov, A.Kh., Burak, I., and Fedyanin, A.N., Steel smelting in superpower arc furnace with higher consumption of solid iron, Vestn. Magnitogorsk. Gos. Tekh. Univ. im. G.I. Nosova, 2014, no. 1, pp. 15–18.
Google Scholar
Zyuban, N.A., Gonik, I.L., and Novitskii, N.A., Technological properties of briquetted charge material from iron-containing wastes, Izv. Volgogr. Gos. Tekh. Univ., 2014, vol. 9, no. 9 (136), pp. 138–140.
Google Scholar
Borshchev, S.M., Prokhorenko, V.N., and Vostrikov, S.S., Prospective development of scrap-processing at Belarusian Metallurgical Plant, Lit’e Metall., 2012, no. 2 (65), pp. 63–65.
Google Scholar
Nikiforov, B.A., Bigeev, V.A., Panteleev, A.V., and Usherov, A.I., Extension of charge stock for steel smelting in electric arc furnaces, Vestn. Magnitogorsk. Gos. Tekh. Univ. im. G.I. Nosova, 2007, no. 1, pp. 38–41.
Google Scholar
Steblov, A.B., Operation of electric arc furnace for steel smelting with liquid metal remains, Lit’e Metall., 2016, no. 1 (82), pp. 66–71.
Google Scholar
Shishimirov, M.V. and Sosonkin, O.M., Efficient use and resources for improvement of steel smelting in electric arc furnace, Vestn. Yuzh.-Ural. Gos. Univ., Metall., 2015, vol. 15, no. 3, pp. 70–79.
Google Scholar
Korneev, S.V. and Trusov, I.A., Correlation of smelting energy regime and technological parameters for the electric arc furnaces of different capacity, Lit’e Metall., 2012, no. (67), pp. 209–217.
Google Scholar
Rakhmonov, I.U., Analysis of energy performance of the electric arc furnace, Simvol Nauki, 2015, no. 9, pp. 109–111.
Google Scholar
Demin, D.A., Fuzzy clustering in the problem of modeling “structure-property” according to the passive experiment in uncertain conditions, Probl. Mashinostr., 2013, vol. 16, no. 6, pp. 15–23.
Google Scholar
Logunova, O.S., Filippov, E.G., Pavlov, I.V., and Pavlov, V.V., Multicriterial optimization of the batch composition for steel-smelting arc furnaces, Steel Transl., 2013, vol. 43, no. 1, pp. 34–38.
Article
Google Scholar
TI 101-CN-CGW-64-2012. Vyplavka stali v elektropechakh (TI 101-CN-CGW-64-2012: Steel Smelting in Electric Furnaces), Magnitogorsk: Magnitogorsk. Metall. Komb., 2007.
Logunova, O.S. and Pavlov, V.V., Stabilizing the residual contents in steel by using alternative materials in the metallic charge of an arc steelmaking furnace, Metallurgist, 2014, vol. 58, nos. 3–4, pp. 299–305.
Article
Google Scholar