Skip to main content
Log in

The Cytotoxic Activity of Phenazine Compounds from Pseudomonas chlororaphis subsp. aurantiaca against the HeLa Cell Line

  • EXPERIMENTAL PAPERS
  • Published:
Molecular Genetics, Microbiology and Virology Aims and scope Submit manuscript

Abstract

In this investigation, the cytotoxic activity of phenazine compounds from different bacterial strains of Pseudomonas chlororaphis subsp. aurantiaca against the HeLa cervical adenocarcinoma cell line was studied. The cytotoxic concentrations of phenazines against HeLa cells were 300 μg/mL. After incubation with phenazines, cytological preparations of HeLa cells showing the presence of apoptotic bodies were obtained. The effect of phenazines on HeLa cells led to a change in the expression of their ABC transporter genes (abcc1 and abcg2) and tp53. The activity of tp53 increased almost 13-fold, while the expression of the abcc1 and abcg2 genes decreased. The activation of tp53 is one of the probable causes of apoptotic death of HeLa cells in the presence of phenazine compounds from the bacterium P. chlororaphis subsp. aurantiaca.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Pierson, L.S. and Pierson, E.A., Metabolism and function of phenazines in bacteria: Impacts on the behavior of bacteria in the environment and biotechnological processes, Appl. Microbiol. Biotechnol., 2010, vol. 86, no. 6, pp. 1659–1670. https://doi.org/10.1007/s00253-010-2509-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mavrodi, D.V., Blankenfeldt, W., and Thomashow, L.S., Phenazine compounds in fluorescent Pseudomonas spp. biosynthesis and regulation, Annu. Rev. Phytopathol., 2006, vol. 44, pp. 417–445. https://doi.org/10.1146/annurev.phyto.44.013106.145710

    Article  CAS  PubMed  Google Scholar 

  3. Laursen, J.B. and Nielsen, J., Phenazine natural products: Biosynthesis, synthetic analogues, and biological activity, Chem. Rev., 2004, vol. 104, no. 3, pp. 1663–1685. https://doi.org/10.1021/cr020473j

    Article  CAS  PubMed  Google Scholar 

  4. Guttenberger, N., Blankenfeldt, W., and Breinbauer, R., Recent developments in the isolation, biological function, biosynthesis, and synthesis of phenazine natural products, Bioorg. Med. Chem., 2017, vol. 25, no. 22, pp. 6149–6166. https://doi.org/10.1016/j.bmc.2017.01.002

    Article  CAS  PubMed  Google Scholar 

  5. Mavrodi, D.V., Peever, T.L., Mavrodi, O.V., Parejko, J.A., Lemanceau, R.P., Mazurier, S., et al., Diversity and evolution of the phenazine biosynthesis pathway, Appl. Environ. Microbiol., 2010, vol. 76, no. 3, pp. 866–879. https://doi.org/10.1128/AEM.02009-09

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Huigens, R.W., Brummel, B.R., Tenneti, S., Garrison, A.T., and Xiao, T., Pyrazine and phenazine heterocycles: Platforms for total synthesis and drug discovery, Molecules, 2022, vol. 27, no. 3, pp. 1112–1136. https://doi.org/10.3390/molecules27031112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dasgupta, D., Kumar, A., and Mukhopadhyay, B., Isolation of phenazine 1,6-di-carboxylic acid from Pseudomonas aeruginosa strain HRW.1-S3 and its role in biofilm-mediated crude oil degradation and cytotoxicity against bacterial and cancer cells, Appl. Microbiol. Biotechnol., 2015, vol. 99, no. 20, pp. 8653–8665. https://doi.org/10.1007/s00253-015-6707-x

    Article  CAS  PubMed  Google Scholar 

  8. Cimmino, A., Evidente, A., Mathieu, V., Andolfi, A., Lefranc, F., Kornienkod, A., and Kiss, R., Phenazines and cancer, Nat. Prod. Rep., 2012, vol. 29, no. 4, pp. 487–501. https://doi.org/10.1039/C2NP00079B

    Article  CAS  PubMed  Google Scholar 

  9. Patil, S., Paradeshi, J., and Chaudhari, B., Anti-melanoma and UV-B protective effect of microbial pigment produced by marine Pseudomonas aeruginosa GS-33, Nat. Prod. Rep., 2016, vol. 30, no. 24, pp. 2835–2839. https://doi.org/10.1080/14786419.2016.1154057

    Article  CAS  Google Scholar 

  10. Vipin, C., Ashwini, P., Kavya, A.V., and Rekha, P.D., Overproduction of pyocyanin in Pseudomonas aeruginosa by supplementation of pathway precursor shikimic acid and evaluation of its activity, Res. J. Pharm. Technol., 2017, vol. 10, no. 2, pp. 533–536. https://doi.org/10.5958/0974-360X.2017.00106.8

    Article  Google Scholar 

  11. Myhren, L.E., Nygaard, G., Gausdal, G., Sletta, H., Teigen, K., Degnes, K.F., et al., Iodinin (1,6-dihydroxyphenazine 5,10-dioxide) from Streptosporangium sp. induces apoptosis selectively in myeloid leukemia cell lines and patient cells, Mar. Drugs, 2013, vol. 11, no. 2, pp. 332–349. https://doi.org/10.3390/md11020332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Moris, M.A., 2,3-Dialkoxyphenazines as anticancer agents, Tetrahedron Lett., 2015, vol. 56, no. 21, pp. 2695–2698. https://doi.org/10.1016/j.tetlet.2015.04.003

    Article  CAS  Google Scholar 

  13. Veremeenko, E.G., Analysis of the biological activity of phenazine antibiotics in relation to representatives of the genus Candida, Sbornik materialov Mezhdunarodnoi nauchno-prakticheskoi konferentsii “Zhenshchiny-uchenye Belarusi i Kazakhstana,” Minsk, 2018 g. (Proc. Int. Scientific and Practical Conference “Women-Scientists of Belarus and Kazakhstan,” Minsk, 2018), Minsk: National Institute for Higher Education, 2018, pp. 391–394. https://elib.bsu.by/handle/123456789/196016. Accessed October 30, 2023.

  14. Junjie, Y., Liu, W., Cai, J., Wang, Y., Li, D., Hua, H., and Cao, H., Advances in phenazines over the past decade: Review of their pharmacological activities, mechanisms of action, biosynthetic pathways and synthetic strategies, Mar. Drugs, 2021, vol. 19, no. 11, p. 610. https://doi.org/10.3390/md19110610

    Article  CAS  Google Scholar 

  15. Kennedy, R.K., Veena, V., Naik, P.R., Lakshmi, P., Krishna, R., Sudharani, S., and Sakthivel, N., Phenazine-1-carboxamide (PCN) from Pseudomonas sp. strain PUP6 selectively induced apoptosis in lung (A549) and breast (MDA MB-231) cancer cells by inhibition of antiapoptotic Bcl-2 family proteins, Apoptosis, 2015, vol. 20, no. 6, pp. 858–868. https://doi.org/10.1007/s10495-015-1118-0

    Article  CAS  PubMed  Google Scholar 

  16. Veremeenko, E.G., Lysak, V.V., and Maksimova, N.P., Preparation and characterization of Pseudomonas aurantiaca mutants capable of super synthesis of phenazine antibiotics during cultivation in a minimal medium, Vestn. Beloruss. Gos. Univ., Ser. 2, 2010, vol. 2, pp. 47–53. https://elib.bsu.by/handle/123456789/2742. Accessed October 30, 2023.

  17. Levitch, M.E., Regulation of aromatic amino acid biosynthesis in phenazine-producing strains, J. Bacteriol., 1970, vol. 103, no. 1, pp. 16–19. https://doi.org/10.1128/jb.103.1.16-19.1970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gallager, S.R. and Wiley, E.A., Current Protocols Essential Laboratory Techniques, Wiley-Blackwell, 2008. https://currentprotocols.onlinelibrary.wiley.com/journal/19483430. Accessed October 30, 2023.

  19. Shapira, M.A., Verameyenka, K.G., Liavonchyk, K.V., Dobysh, A.A., Yantsevich, A.V., and Maksimova, N.P., Novel approach of phenazine derivatives isolation from Pseudomonas culture medium, Process Biochem., 2021, vol. 111, no. 2, pp. 325–331. https://doi.org/10.1016/j.procbio.2021.11.004

    Article  CAS  Google Scholar 

  20. Taniguchi, M. and Lindsey, J.S., Database of absorption and fluorescence spectra of >300 common compounds for use in PhotochemCAD, Photochem. Photobiol., 2018, vol. 94, no. 2, pp. 290–327. https://doi.org/10.1111/php.12860

    Article  CAS  PubMed  Google Scholar 

  21. Freshney, R.J., Culture of Animal Cells: A Manual of Basic Technique and Specialized Applications, Wiley-Blackwell, 2018. https://doi.org/10.1002/9780470649367. Accessed October 30, 2023.

  22. Zvorygin, I.A., Statistical analysis of laboratory data, Vector-Best News, 2006, vol. 39, no. 1, pp. 11–25. https://vector-best.ru/publ/nvb.php.

  23. Cherepovich, V.S., Optimization of critical parameters of the MTT test for assessing cellular and drug cytotoxicity, Med. J. Belarus. State Med. Univ., 2006, vol. 2, pp. 106–108. https://rep.bsmu.by/handle/BSMU/4509. Accessed October 30, 2023.

  24. Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A., and Struhl, K., Current Protocols in Molecular Biology, New York: John Wiley and Sons, 2003. https://currentprotocols.onlinelibrary.wiley.com/journal/19343647. Accessed October 30, 2023.

  25. Livak, K.J. and Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2(–Delta Delta C(T)) method, Methods, 2001, vol. 25, no. 4, pp. 402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  26. Pachon, O.G., Azqueta, A., Lavaggi, M.L., Lopez de Cerain, A., Creppy, E., Collins, A., et al., Antitumoral effect of phenazine N5, N10-dioxide derivatives on Caco-2 cells, Chem. Res. Toxicol., 2008, vol. 21, no. 8, pp. 1578–1585. https://doi.org/10.1021/tx800032k

    Article  CAS  PubMed  Google Scholar 

  27. Savon’, E.L., Leonchik, E.V., Pigul’, P.G., Veremeenko, E.G., and Maksimova, N.P., Antifungal activity of purified complexes of phenazine compounds, Materialy mezhdunarodnoi nauchno-prakticheskoi konferentsii “Biotekhnologii mikroorganizmov” (Proc. Int. Scientific and Practical Conference “Biotechnologies of Microorganisms”), Minsk, 2019, pp. 386–387. https://elib.bsu.by/handle/123456789/251769. Accessed October 30, 2023.

  28. Mantovani, F., Collavin, L., and Del Sal, G., Mutant p53 as a guardian of the cancer cell, Cell Death Differ., 2019, vol. 26, no. 2, pp. 199–212. https://doi.org/10.1038/s41418-018-0246-9

    Article  PubMed  Google Scholar 

  29. Correa, I., Cerbon, M.A., Salazar, A., Solano, J.D., García-Carranca, A., and Quintero, A., Differential p53 protein expression level in human cancer-derived cell lines after estradiol treatment, Arch. Med. Res., 2002, vol. 33, no. 5, pp. 455–449. https://doi.org/10.1016/s0188-4409(02)00386-7

    Article  CAS  PubMed  Google Scholar 

  30. Stavrovskaya, A.A. and Rybalkina, E.Yu., Recent advances in the studies of molecular mechanisms regulating multidrug resistance in cancer cells, Biochemistry (Moscow), 2018, vol. 83, no. 7, pp. 779–786. Accessed October 30, 2023.https://doi.org/10.1134/S0006297918070015

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the State Scientific Research Program of the Republic of Belarus, project no. 20211293.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Zhyzneyskaya.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by A. Panyushkina

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhyzneyskaya, A.A., Lukashevich, A.A., Maksimova, N.P. et al. The Cytotoxic Activity of Phenazine Compounds from Pseudomonas chlororaphis subsp. aurantiaca against the HeLa Cell Line. Mol. Genet. Microbiol. Virol. 38, 215–221 (2023). https://doi.org/10.3103/S0891416823040079

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0891416823040079

Keywords:

Navigation