Skip to main content
Log in

The Spatial Location of Single Amino Acid Substitutions in Proteins of Cold-Adapted Influenza B Viruses and Their Impact upon Cold Adaptation

  • REVIEWS
  • Published:
Molecular Genetics, Microbiology and Virology Aims and scope Submit manuscript

Abstract

This review summarizes the locations of unique amino acid substitutions in proteins of cold-adapted influenza B viruses, master donor viruses of live attenuated influenza vaccines: B/Ann Arbor/1/66ca, B/USSR/60/69, B/Leningrad/14/17/55, B/Victoria/2/63/87, and B/Vienna/1/99ca. The analysis is based on data on the viral sequences and information on the functional organization of internal proteins of the influenza B virus. A description is given of the main features of the structure of internal proteins from influenza B virus and a recent understanding of the functioning of their domains. We describe 35 substitutions in proteins of the ribonucleoprotein complex [PB1 (3), PB2 (10), PA (11), NP (11)] of cold-adapted influenza B viruses. In total, there are 44 amino acid positions that are considered to be associated with cold adaptation. Protein domains involved in protein–protein interactions are the most susceptible to changes. In the polymerase complex, the largest number of replacements were found in C-terminal domains of PA and PB2 proteins, forming the external parts of the polymerase complex structure and providing interaction among subunits, with cellular factors, and with the nucleoprotein (NP). Substitutions in the NP are located in the areas responsible for its oligomerization (flexible N-terminal fragment), as well as for interaction with the polymerase complex (the outer surface of the NP head and body domains). All the cold-adapted viruses had changes in the seventh segment of the genome, leading to amino acid substitutions in the matrix protein or BM2 proton channel. An analysis of the location of amino acid substitutions allows it to be theorized that an important role is played by the internal gene constellation in attenuation of cold-adapted viruses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Massin, P., van der Werf, S., and Naffakh, N., Residue 627 of PB2 is a determinant of cold sensitivity in RNA replication of avian influenza viruses, J. Virol., 2001, vol. 75, no. 11, pp. 5398–5404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Isakova-Sivak, I. and Rudenko, L., Safety, immunogenicity and infectivity of new live attenuated influenza vaccines, Expert Rev. Vaccines, 2015, vol. 14, no. 10, pp. 1313–1329.

    Article  CAS  PubMed  Google Scholar 

  3. Belshe, R.B., Coelingh, K., Ambrose, C.S., et al., Efficacy of live attenuated influenza vaccine in children against influenza B viruses by lineage and antigenic similarity, Vaccine, 2010, vol. 28, no. 9, pp. 2149–2156.

    Article  CAS  PubMed  Google Scholar 

  4. Chen, Z., Aspelund, A., Kemble, G., and Jin, H., Genetic mapping of the cold-adapted phenotype of B/Ann Arbor/1/66, the master donor virus for live attenuated influenza vaccines (FluMist), Virology, 2006, vol. 345, no. 2, pp. 416–423.

    Article  CAS  PubMed  Google Scholar 

  5. Kiseleva, I.V., Voeten, J.T.M., Teley, L.C.P., et al., PB2 and PA genes control the expression of the temperature-sensitive phenotype of cold-adapted B/USSR/60/69 influenza master donor virus, J. Gen. Virol., 2010, vol. 91, part 4, pp. 931–937.

    Article  CAS  PubMed  Google Scholar 

  6. Hoffmann, E., Mahmood, K., Chen, Z., et al., Multiple gene segments control the temperature sensitivity and attenuation phenotypes of ca B/Ann Arbor/1/66, J. Virol., 2005, vol. 79, no. 17, pp. 11014–11021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Aleksandrova, G.I., RF Patent 2068271, 1996.

  8. Gendon, Yu.Z., Markushin, S.G., Tsfasman, T.M., et al., New cold-adapted donor strains for live influenza vaccine, Vopr. Virusol., 2013, vol. 58, no. 1, pp. 11–17.

    PubMed  Google Scholar 

  9. Katinger, H., Egorov, A., Ferko, B., et al., Int. Patent WO 2002024876 A2, 2002. https://www.google.com/ patents/WO2002024876A2. Accessed July 5, 2017.

  10. Seo, S.-U., Byun, Y.-H., Lee, E.-Y., et al., Development and characterization of a live attenuated influenza B virus vaccine candidate, Vaccine, 2008, vol. 26, no. 7, pp. 874–881.

    Article  CAS  PubMed  Google Scholar 

  11. Lee, E.-Y., Lee, K.-H., Jung, E.-J., et al., Genotyping and screening of reassortant live-attenuated influenza B vaccine strain, J. Virol. Methods, 2010, vol. 165, no. 2, pp. 133–138.

    Article  CAS  PubMed  Google Scholar 

  12. Jang, Y.H., Lee, E.-Y., Byun, Y.H., et al., Protective efficacy in mice of monovalent and trivalent live attenuated influenza vaccines in the background of cold-adapted A/X-31 and B/Lee/40 donor strains, Vaccine, 2014 vol. 32, no. 5, pp. 535–543.

    Article  CAS  PubMed  Google Scholar 

  13. Maassab, H.F. and DeBorde, D.C., Development and characterization of cold-adapted viruses for use as live virus vaccines, Vaccine, 1985, vol. 3, no. 5, pp. 355–369.

    Article  CAS  PubMed  Google Scholar 

  14. Donabedian, A.M., DeBorde, D.C., and Maassab, H.F., Genetics of A/X-31 and B/Lee/40 donor strains, Vaccine, 2014, vol. 32, no. 5, pp. 535–543.

    Article  CAS  Google Scholar 

  15. Rudenko, L. and Alexandrova, G., Current strategies for the prevention of influenza by the Russian cold-adapted live influenza vaccine among different populations, Int. Congr. Ser., 2001, vol. 1219, pp. 945–950.

    Article  Google Scholar 

  16. Alexandrova, G.I., Maassab, H.F., Kendal, A.P., et al., Laboratory properties of cold-adapted influenza B live vaccine strains developed in the US and USSR, and their B/Ann Arbor/1/86 cold-adapted reassortant vaccine candidates, Vaccine, 1990, vol. 8, no. 1, pp. 61–64.

    Article  CAS  PubMed  Google Scholar 

  17. Resa-Infante, P., Jorba, N., Coloma, R., and Ortín, J., The influenza RNA synthesis machine, RNA Biol., 2011, vol. 8, no. 2, pp. 207–215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu, Y., Yang, Y., Fan, J., et al., The crystal structure of the PB2 cap-binding domain of influenza B virus reveals a novel cap recognition mechanism, J. Biol. Chem., 2015, vol. 290, no. 14, pp. 9141–9149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Reich, S., Guilligay, D., Pflug, A., et al., Structural insight into cap-snatching and RNA synthesis by influenza polymerase, Nature, 2014, vol. 516, no. 7531, pp. 361–366.

  20. Pflug, A., Guilligay, D., Reich, S., and Cusack, S., Structure of influenza A polymerase bound to the viral RNA promoter, Nature, 2014, vol. 516, no. 7531, pp. 355–360.

    Article  CAS  PubMed  Google Scholar 

  21. Massin, P., van der Werf, S., and Naffakh, N., Residue 627 of PB2 is a determinant of cold sensitivity in RNA replication of avian influenza viruses, J. Virol., 2001, vol. 75, no. 11, pp. 5398–5404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Subbarao, E.K., London, W., and Murphy, B.R., A single amino acid in the PB2 gene of influenza A virus is a determinant of host range, J. Virol., 1993, vol. 67, no. 4, pp. 1761–1764.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Boivin, S., Cusack, S., Ruigrok, R.W.H., and Hart, D.J., Influenza A virus polymerase: structural insights into replication and host adaptation mechanisms, J. Biol. Chem., 2010, vol. 285, no. 37, pp. 28411–28417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. He, X., Zhou, J., Bartlam, M., et al., Crystal structure of the polymerase PA(C)-PB1(N) complex from an avian influenza H5N1 virus, Nature, 2008, vol. 454, no. 7208, pp. 1123–1126.

    Article  CAS  PubMed  Google Scholar 

  25. Obayashi, E., Yoshida, H., Kawai, F., et al., The structural basis for an essential subunit interaction in influenza virus RNA polymerase, Nature, 2008, vol. 454, no. 7208, pp. 1127–1131.

    Article  CAS  PubMed  Google Scholar 

  26. Ng, A.K.-L., Lam M.K.-H., Zhang H., et al., Structural basis for RNA binding and homo-oligomer formation by influenza B virus nucleoprotein, J. Virol., 2012, vol. 86, no. 12, pp. 6758–6767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu, M, Lam, M.K.-H., Zhang, Q., et al., The functional study of the N-terminal region of influenza B virus nucleoprotein, PLoS One, 2015, vol. 10, no. 9, p. e0137802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wanitchang, A., Narkpuk, J., and Jongkaewwattana, A., Nuclear import of influenza B virus nucleoprotein: involvement of an N-terminal nuclear localization signal and a cleavage-protection motif, Virology, 2013, vol. 443, no. 1, pp. 59–68.

    Article  CAS  PubMed  Google Scholar 

  29. Hatta, M., Kohlmeier, C.K., Hatta, Y., et al., Region required for protein expression from the stop-start pentanucleotide in the M gene of influenza B virus, J. Virol., 2009, vol. 83, no. 11, pp. 5939–5942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Safo, M.K., Musayev, F.N., Mosier, P.D., et al., Crystal structures of influenza A virus matrix protein M1: Variations on a theme, PLoS One, 2014, vol. 9, no. 10, p. e109510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cao, S., Jiang, J., Li, J., et al., Characterization of the nucleocytoplasmic shuttle of the matrix protein of influenza B virus, J. Virol., 2014, vol. 88, no. 13, pp. 7464–7473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Biasini, M., Bienert, S., Waterhouse, A., et al., SWISS-MODEL: Modelling protein tertiary and quaternary structure using evolutionary information, Nucleic Acids Res., 2014, vol. 42, no. 1, pp. 252–258.

    Article  CAS  Google Scholar 

  33. Wang, J., Pielak, R.M., McClintock, M.A., and Chou, J.J., Solution structure and functional analysis of the influenza B proton channel, Nat. Struct. Mol. Biol., 2009, vol. 16, no. 12, pp. 1267–1271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wakefield, L. and Brownlee, G.G., RNA-binding properties of influenza A virus matrix protein M1, Nucleic Acids Res., 1989, vol. 17, no. 21, pp. 8569–8580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sha, B. and Luo, M., Structure of a bifunctional membrane-RNA binding protein, influenza virus matrix protein M1, Nat. Struct. Biol., 1997, vol. 4, no. 3, pp. 239–244.

    Article  CAS  PubMed  Google Scholar 

  36. Arzt, S., Baudin, F., Barge, A., et al., Combined results from solution studies on intact influenza virus M1 protein and from a new crystal form of its N-terminal domain show that M1 is an elongated monomer, Virology, 2001, vol. 279, no. 2, pp. 439–446.

    Article  CAS  PubMed  Google Scholar 

  37. Shtykova, E.V., Baratova, L.A., Fedorova, N.V., et al., Structural analysis of Influenza A virus matrix protein M1 and its self-assemblies at low pH, PLoS One, 2013, vol. 8, no. 12, p. e82431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shishkov, A., Bogacheva, E., Fedorova, N., et al., Spatial structure peculiarities of influenza A virus matrix M1 protein in an acidic solution that simulates the internal lysosomal medium, FEBS J., 2011, vol. 278, no. 24, pp. 4905–4916.

    Article  CAS  PubMed  Google Scholar 

  39. Zhang, K., Wang, Z., Liu, X., et al., Dissection of influenza A virus M1 protein: pH-dependent oligomerization of N-terminal domain and dimerization of C‑terminal domain, PLoS One, 2012, vol. 7, no. 5, p. e37786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang, K., Wang, Z., Fan, G.-Z., et al., Two polar residues within C-terminal domain of M1 are critical for the formation of influenza A virions, Cell. Microbiol., 2015, vol. 17, no. 11, pp. 1583–1593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yin, C., Khan, J.A., Swapna, G.V.T., et al., Conserved surface features form the double-stranded RNA binding site of non-structural protein 1 (NS1) from influenza A and B viruses, J. Biol. Chem., 2007, vol. 282, no. 28, pp. 20584–20592.

    Article  CAS  PubMed  Google Scholar 

  42. Wang, W. and Krug, R.M., The RNA-binding and effector domains of the viral NS1 protein are conserved to different extents among influenza A and B viruses, Virology, 1996, vol. 223, no. 1, pp. 41–50.

    Article  CAS  PubMed  Google Scholar 

  43. Guan, R., Ma, L.-C., Leonard, P.G., et al., Structural basis for the sequence-specific recognition of human ISG15 by the NS1 protein of influenza B virus, Proc. Natl. Acad. Sci. U. S. A., 2011, vol. 108, no. 33, pp. 13468–13473.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ma, L.-C., Guan, R., Hamilton, K., et al., A second RNA-binding site in the NS1 protein of influenza B virus, Structure, 2016, vol. 24, no. 9, pp. 1562–1572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dauber, B., Schneider, J., and Wolff, T., Double-stranded RNA binding of influenza B virus nonstructural NS1 protein inhibits protein kinase R but is not essential to antagonize production of alpha/beta interferon, J. Virol., 2006, vol. 80, no. 23, pp. 11667–11677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Imai, M., Watanabe, S., and Odagiri, T., Influenza B virus NS2, a nuclear export protein, directly associates with the viral ribonucleoprotein complex, Arch. Virol., 2003, vol. 148, no. 10, pp. 1873–1884.

    Article  CAS  PubMed  Google Scholar 

  47. Paragas, J., Talon, J., O’Neill, R.E., et al., Influenza B and C virus NEP (NS2) proteins possess nuclear export activities, J. Virol., 2001, vol. 75, no. 16, pp. 7375–7383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cha, T.-A., Kao, K., Zhao, J., et al., Genotypic stability of cold-adapted influenza virus vaccine in an efficacy clinical trial, J. Clin. Microbiol., 2000, vol. 38, no. 2, pp. 839–845.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Kiseleva, I.V., Klimov, A.I., Grigor’eva, E.P., et al., Genetic and phenotypic analysis of heterogeneous population of A/Leningrad/134/17/57 (H2N2) cold-adapted donor of the attenuation and donor-based reassortant influenza vaccine strains, Vopr. Virusol., 2005, vol. 50, no. 2, pp. 14–18.

    CAS  PubMed  Google Scholar 

  50. Buonagurio, D.A., Bechert, T.M., Yang, C.-F., et al., Genetic stability of live, cold-adapted influenza virus components of the FluMist/CAIV-T vaccine throughout the manufacturing process, Vaccine, 2006, vol. 24, no. 12, pp. 2151–2160.

    Article  CAS  PubMed  Google Scholar 

  51. Buonagurio, D.A., O’Neill, R.E., Shutyak, L., et al., Genetic and phenotypic stability of cold-adapted influenza viruses in a trivalent vaccine administered to children in a day care setting, Virology, 2006, vol. 347, no. 2, pp. 296–306.

    Article  CAS  PubMed  Google Scholar 

  52. Murphy, B.R., Park, E.J., Gottlieb, P., and Subbarao, K., An influenza A live attenuated reassortant virus possessing three temperature-sensitive mutations in the PB2 polymerase gene rapidly loses temperature sensitivity following replication in hamsters, Vaccine, 1997, vol. 15, nos. 12–13, pp. 1372–1378.

    Article  CAS  PubMed  Google Scholar 

  53. Treanor, J.J., Buja, R., and Murphy, B.R., Intragenic suppression of a deletion mutation of the nonstructural gene of an influenza A virus, J. Virol., 1991, vol. 65, no. 8, pp. 4204–4210.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Stepanova.

Additional information

Translated by M. Novikova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stepanova, E.A., Krutikova, E.V., Kiseleva, I.V. et al. The Spatial Location of Single Amino Acid Substitutions in Proteins of Cold-Adapted Influenza B Viruses and Their Impact upon Cold Adaptation. Mol. Genet. Microbiol. Virol. 33, 169–181 (2018). https://doi.org/10.3103/S0891416818030060

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0891416818030060

Keywords:

Navigation