Skip to main content
Log in

Characteristics of Emergence of Mutants Resistant to Nalidixic Acid and Novobiocin in E. coli Strains with recA and lexA Mutations

  • Experimental Works
  • Published:
Molecular Genetics, Microbiology and Virology Aims and scope Submit manuscript

Abstract

The main problem of the modern medical microbiology is the widespread resistance of bacteria to many antibiotics used in therapy. Resistance to antibiotics is mainly developed due to mutations in the bacterial genome. One of the proposed mechanisms for the occurrence of mutations is the functioning of the inducible SOS response system, the proteins of which are synthesized in the cell affected by antibiotics. The RecA and LexA proteins encoded by the corresponding genes are regulators of the SOS response in bacteria. The effect of the recA13 and lexA1 mutations on bacterial resistance to nalidixic acid and novobiocin and on the rates of antibiotic resistance development was studied. The SOS response system was shown to play a minor role in the development of the bacterial resistance to quinolones and aminocoumarins, as well as in mutagenesis, during application of these antibiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Collin, F., Karkare, S., and Maxwell, A., Exploiting bacterial DNA gyrase as a drug target: Current state and perspectives, Appl Microbiol. Biotechnol., 2011, vol. 92, no. 3, pp. 479–497.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Doublet, B., Kempf, I., Haenni, M., et al., Characteristics of quinolone resistance in Escherichia coli isolates from humans, animals, and the environment in the Czech Republic, Front. Microbiol., 2017, vol. 7, no. 7, p. 2147.

    Google Scholar 

  3. Nollmann, M., Stone, M., Bryant, Z., et al., Multiple modes of Escherichia coli DNA gyrase activity revealed by force and torque, Nat. Struct. Mol. Biol., 2007, vol. 14, no. 4, pp. 264–271.

    Article  PubMed  CAS  Google Scholar 

  4. Reece, R. and Maxwell, A., DNA gyrase: Structure and function, Crit. Rev. Biochem. Mol. Biol., 1991, vol. 26, nos. 3–4, pp. 335–375.

    Article  PubMed  CAS  Google Scholar 

  5. Gellert, M., O’dea, M., Itoh, T., and Tomizawa, J.–I., Novobiocin and coumermycin inhibit DNA supercoiling catalyzed by DNA gyrase, Biochemistry, 1976, vol. 73, no. 12, pp. 4474–4478.

    CAS  Google Scholar 

  6. Tankovic, J., Lascols, C., Sculo, Q., et al., NOTES single and double mutations in gyrA but not in gyrB are associated with low–and high–level fluoroquinolone resistance in Helicobacter pylori, Antimicrob. Agents Chemother., 2003, vol. 47, no. 12, pp. 3942–3944.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Anderson, V. and Osheroff, N., Type II topoisomerases as targets for quinolone antibacterials turning Dr. Jekyll into Mr. Hyde, Curr. Pharm. Des., 2001, vol. 7, no. 5, pp. 337–353.

    Article  PubMed  CAS  Google Scholar 

  8. Cirz, R., Chin, J., Andes, D., et al., Inhibition of mutation and combating the evolution of antibiotic resistance, PLoS Biol., 2005, vol. 3, no. 6, pp. 1024–1033.

    Article  CAS  Google Scholar 

  9. Cirz, R. and Romesberg, F., Induction and inhibition of ciprofloxacin resistance–conferring mutations in hypermutator bacteria, Antimicrob. Agents Chemother., 2006, vol. 50, no. 1, pp. 220–225.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. McPartland, A., Green, L., and Echols, H., Control of recA gene RNA in E. coli: Regulatory and signal genes, Cell, 1980, vol. 20, no. 3, pp. 731–737.

    Article  PubMed  CAS  Google Scholar 

  11. Roca, J., The mechanisms of DNA topoisomerases, Trends Biochem. Sci., 1995, vol. 20, pp. 156–160.

    Article  PubMed  CAS  Google Scholar 

  12. Bianco, P. and Kowalczykowsk, S., RecA protein, in Encyclopedia of Life Sciences, Wiley–Blackwell, 2005, pp. 1–9.

    Google Scholar 

  13. Roca, A., Cox, M., and Brenner, S., The RecA protein: Structure and function, Crit. Rev. Biochem. Mol. Biol., 1990, vol. 25, no. 6, pp. 415–456.

    Article  PubMed  CAS  Google Scholar 

  14. Shibata, T., RecA protein, in Encyclopedia of Life Sciences, Wiley–Blackwell, 1987, vol. 32, no. 1, pp. 69–76.

    CAS  Google Scholar 

  15. Meghna, P., Jiang, Q., Woodgate, R., et al., A new model for SOS–induced mutagenesis: How RecA protein activates DNA polymerase, Crit. Rev. Biochem. Mol. Biol., 2010, vol. 45, no. 3, pp. 171–184.

    Article  CAS  Google Scholar 

  16. Gruber, A., Erdem, A., Sabat, G., et al., A RecA protein surface required for activation of DNA polymerase V, PLoS Genet., 2015, vol. 11, no. 3, pp. 1–37.

    Article  CAS  Google Scholar 

  17. DeWitt, S. and Adelberg, E., The occurrence of a genetic transposition in a strain of Escherichia coli, Genetics, 1962, vol. 47, pp. 577–585.

    PubMed  PubMed Central  CAS  Google Scholar 

  18. Howard–Flanders, P. and Theriot, L., Mutants of Escherichia coli K–12 defective in DNA repair and in genetic recombination TL–53, Genetics, 1966, vol. 53, no. 6, p. 1137.

    PubMed  PubMed Central  Google Scholar 

  19. Howard–Flanders, P., Genes that control DNA repair and genetic recombination in Escherichia coli, Adv. Biol. Med. Phys., 1968, vol. 12, pp. 299–317.

    Article  PubMed  Google Scholar 

  20. Wiegand, I., Hilpert, K., and Hancock, R., Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances, Nat. Protoc., 2008, vol. 3, no. 2, pp. 163–175.

    Article  PubMed  CAS  Google Scholar 

  21. Jones, M., LB fluctuation experiments; accounting simultaneously for plating efficiency and differential growth rate, J. Theor. Biol., 1994, vol. 166, pp. 355–363.

    Article  PubMed  CAS  Google Scholar 

  22. Luria, S. and Delbrück, M., Mutations of bacteria from virus sensitivity to virus resistance, Genetics, 1943, vol. 28, no. 6, pp. 491–511.

    PubMed  PubMed Central  CAS  Google Scholar 

  23. Ma, W., Sandri, G., and Sarkar, S., Analysis of the Luria–Delbrück distribution using discrete convolution powers, J. Appl. Probab., 1992, vol. 29, no. 2, pp. 255–267.

    Article  Google Scholar 

  24. Sarkar, S., Ma, W., and Sandri, G., On fluctuation analysis: A new, simple and efficient method for computing the expected number of mutants, Genetica, 1992, vol. 85, no. 2, pp. 173–179.

    Article  PubMed  CAS  Google Scholar 

  25. Foster, P., Methods for determining spontaneous mutation rates, Methods Enzymol., 2006, vol. 409, pp. 195–213.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Rosche, W. and Foster, P., Determining mutation rates in bacterial populations, Methods, 2000, vol. 20, no. 1, pp. 4–17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Hall, B., Ma, C.–X., Liang, P., and Singh, K., Fluctuation AnaLysis CalculatOR: A web tool for the determination of mutation rate using Luria–Delbruck fluctuation analysis, Bioinformatics, 2009, vol. 25, no. 12, pp. 1564–1565.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Slilaty, S. and Little, J., Lysine–156 and serine–119 are required for LexA repressor cleavage: A possible mechanism, Biochemistry, 1987, vol. 84, pp. 3987–3991.

    CAS  Google Scholar 

  29. Janion, C., Inducible SOS response system of DNA repair and mutagenesis in Escherichia coli, Int. J. Biol. Sci., 2008, vol. 4, pp. 338–344.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Lewin, C., Howard, M., Ratcliffe, N., and Smith, J., 4–Quinolones and the SOS response, J. Med. Microbiol., 1989, vol. 29, pp. 139–144.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. N. Bodoev.

Additional information

Original Russian Text © I.N. Bodoev, E.N. Ilina, G.B. Smirnov, 2018, published in Molekulyarnaya Genetika, Mikrobiologiya i Virusologiya, 2018, No. 1, pp. 26–28.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bodoev, I.N., Ilina, E.N. & Smirnov, G.B. Characteristics of Emergence of Mutants Resistant to Nalidixic Acid and Novobiocin in E. coli Strains with recA and lexA Mutations. Mol. Genet. Microbiol. Virol. 33, 30–33 (2018). https://doi.org/10.3103/S0891416818010044

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0891416818010044

Keywords

Navigation