Skip to main content

Advertisement

Log in

Molecular evolution of West Nile virus

  • Experimental Works
  • Published:
Molecular Genetics, Microbiology and Virology Aims and scope Submit manuscript

Abstract

Phylogenetic analysis and estimation of the rate of evolution of West Nile virus (WNV) were conducted. Sixty-eight nucleotide sequences of WNV E protein were used for the analysis. The rate of nucleotide substitution accumulation was 2.5 × 10−4 substitutions per site per year. Phylogenetic analysis and estimation of WNV evolution time using molecular-clock methodology demonstrated that the WNV genotypes 1, 2, and 4 with an estimated time of divergence from the common precursor of approximately 2360, 2800, and 5950 years, respectively, circulate on the territory of the European part of Russia. The ratio of frequencies of nonsynonymous substitutions (dN) to synonymous substitutions (dS) can vary within 0.022–0.275 for certain WNV strains grouped according to geographical and/or phylogenetic traits. The highest values of dN/dS ratio were found for modern WNV isolates in Russia and in North America, which appeared in new natural biocenoses of these regions in the last 14 years. dN/dS estimation for WNV species shows that indices of intraspecific dN/dS variability can be used for detecting the presence of accelerated evolution of new WNV isolates. All this confirms the hypothesis that favorable conditions exist for wide distribution and rapid evolution of different WNV genotypes (that arose 2000–6000 years ago) in modern natural and climatic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Glushkova, L.I., Korabel’nikov, I.V., Egorova, Yu.I., et al., Dezinfekts. Delo, 2012, vol. 1, pp. 52–56.

    Google Scholar 

  2. Platonov, A.E., Karan’, L.S., Shopenskaya, T.A., et al., Zh. Mikrobiol. Epidemiol. Immunobiol., 2011, vol. 2, pp. 29–37.

    PubMed  Google Scholar 

  3. Subbotina, E.L. and Loktev, V.B., Mol. Biol., 2012, vol. 46, pp. 82–92.

    Article  CAS  Google Scholar 

  4. Ternovoi, V.A., Shchelkanov, M.Yu., Shestopalov, A.M., et al., Vopr. Virusol., 2004, vol. 49, pp. 52–56.

    CAS  PubMed  Google Scholar 

  5. Ternovoi, V.A., Protopopova, E.V., Surmach, S.G., et al., Mol. Genet. Mikrobiol. Virusol., 2006, vol. 4, pp. 30–35.

    Google Scholar 

  6. Shopenskaya, T.A., Fedornova, M.V., Karan’, L.S., et al., Epidemiol. Infekts. Bolezni, 2008, vol. 5, pp. 38–45.

    Google Scholar 

  7. Alley, R.B., Fahnestock, M., and Joughin, I., Science, 2008, vol. 322, no. 5904, pp. 1061–1062.

    Article  CAS  PubMed  Google Scholar 

  8. Bondre, V.P., Jadi, R.S., Mishra, A.C., et al., J. Gen. Virol., 2007, vol. 88, no. 3, pp. 875–884.

    Article  CAS  PubMed  Google Scholar 

  9. Brugger, K. and Rubel, F., Prev. Vet. Med., 2009, vol. 88, pp. 24–31.

    Article  PubMed  Google Scholar 

  10. Bryant, J.E., Holmes, E.C., and Barrett, A.D., PLoS Pathog., 2007, vol. 3, p. e75.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Campbell, G.L., Marfin, A.A., Lanciottl, R.S., and Gubler, D.J., Lancet. Infect. Dis., 2002, vol. 2, pp. 519–529.

    Article  PubMed  Google Scholar 

  12. Drummond, A.J. and Rambaut, A., BMC Evol. Biol., 2007, vol. 7, p. 214.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Gaunt, M.W., Sall, A.A., de Lamballorie, X., et al., J. Gen. Virol., 2001, vol. 82, no. 8, pp. 1867–1876.

    CAS  PubMed  Google Scholar 

  14. Gubler, D.J., Clin. Infect. Dis., 2007, vol. 45, pp. 1039–1046.

    Article  PubMed  Google Scholar 

  15. Hayes, E.B., Sejvar, J.J., Zaki, S.R., et al., Emerg. Infect. Dis., 2005, vol. 11, pp. 1174–1179.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Kaufman, D.S., Schneider, D.P., McKay, N.P., et al., Science, 2009, vol. 325, no. 5945, pp. 1236–1239.

    Article  CAS  PubMed  Google Scholar 

  17. King, A.M.Q., Lefkowitz, E., Adams, M.J., and Carstens, E.B., Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses, Elsevier, 2011.

    Google Scholar 

  18. Kramer, L.D., Styer, L.M., and Ebel, G.D., Ann. Rev. Entomol., 2008, vol. 53, pp. 61–81.

    Article  CAS  Google Scholar 

  19. Kumar, S., Nei, M., Dudley, J., and Tamura, K., Brief Bioinform., 2008, vol. 9, pp. 299–306.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Kuno, G., Chang, G.-J.J., Tsuchiya, K.R., et al., J. Virol., 1998, vol. 72, pp. 73–83.

    PubMed Central  CAS  PubMed  Google Scholar 

  21. Licciardi, J.M., Schaefer, J.M., Taggart, J.R., and Lund, D.C., Science, 2009, vol. 325, pp. 1677–1679.

    Article  CAS  PubMed  Google Scholar 

  22. Mann, M.E., Zhang, Z., Rutherford, S., et al., Science, 2009, vol. 326, pp. 1256–1260.

    Article  CAS  PubMed  Google Scholar 

  23. May, F.J., Davis, C.T., Tesh, R.B., and Barrett, A.D., J. Virol., 2011, vol. 85, pp. 2964–2974.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Mehla, R., Kumar, S.R., Yadav, P., et al., Emerg. Infect. Dis., 2009, vol. 15, pp. 1431–1437.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Messer, W.B., Gubler, D.J., Harris, E., et al., Emerg. Infect. Dis., 2003, vol. 9, pp. 800–809.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Murata, R., Hashiguchi, K., Yoshii, K., et al., Am. J. Trop. Med. Hyg., 2011, vol. 84, pp. 461–465.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Platonov, A.E., Shipulin, G.A., Shipulina, O.Y., et al., Emerg. Infect. Dis., 2001, vol. 7, pp. 128–132.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Platonov, A.E., Fedorova, M.V., Karan, L.S., et al., Parasitol. Res., 2008, vol. 103, Suppl. 1, pp. S45–S53.

    Article  PubMed  Google Scholar 

  29. Pond, S.L. and Frost, S.D., W. Bioinformatics, 2005, vol. 21, pp. 2531–2533.

    Article  CAS  Google Scholar 

  30. Reisen, W.K., Fang, Y., and Martinez, V.M., J. Med. Entomol., 2006, vol. 43, pp. 309–317.

    Article  PubMed  Google Scholar 

  31. Roehrig, J.T., Layton, M., Smith, P., et al., Curr. Top. Microbiol. Immunol., 2002, vol. 267, pp. 223–240.

    CAS  PubMed  Google Scholar 

  32. Tabachnick, W.J., Amer. Entomol., 1991, vol. 37, pp. 14–24.

    Google Scholar 

  33. Suzuki, Y., Genes Genet. Syst., 2007, vol. 82, pp. 187–195.

    Article  PubMed  Google Scholar 

  34. Weissenbock, H., Kolodziejek, J., Url, A., et al., Emerg. Infect. Dis., 2002, vol. 8, pp. 652–656.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. L. Subbotina.

Additional information

Original Russian Text © E.L. Subbotina, V.B. Loktev, 2014, published in Molekulyarnaya Genetika, Mikrobiologiya i Virusologiya, 2014, No. 1, pp. 31–37.

About this article

Cite this article

Subbotina, E.L., Loktev, V.B. Molecular evolution of West Nile virus. Mol. Genet. Microbiol. Virol. 29, 34–41 (2014). https://doi.org/10.3103/S0891416814010054

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0891416814010054

Keywords

Navigation