Skip to main content
Log in

Molecular genetic characterization of multidrug-resistant Acinetobacter baumannii strains and assessment of their sensitivity to phage AP22

  • Experimental Works
  • Published:
Molecular Genetics, Microbiology and Virology Aims and scope Submit manuscript

Abstract

Molecular genetic analysis of 130 multidrug-resistant nosocomial Acinetobacter baumannii strains was performed. The strains were obtained from patients admitted to different hospitals in large Russian cities (Chelyabinsk, Moscow, Nizhny Novgorod, and St. Petersburg) in 2005–2010. Species identification was performed by the amplified 16S rRNA gene restriction analysis and by determining the bla OXA-51-like genes intrinsic for A. baumannii using PCR. Genetic typing of the strains was performed by RAPD-PCR. All strains fell into two clusters, A and B, with the dominant RAPD groups A1 and B1, respectively, including 82% (107 out of 130) of all strains under study. Susceptibility of the strains to bacteriophage AP22 was determined. The phage was shown to infect specifically and to lyse 69% of 130 strains and 82% (88 out of 107) of A. baumannii strains from the dominant RAPD groups. The ability of bacteriophage AP22 to lyse a broad range of clinically relevant A. baumannii strains makes it an attractive candidate for designing phage cocktails intended to control the A. baumannii-associated nosocomial infections. Moreover, the phage can be used for identifying A. baumannii in the bacteriological tests of clinical samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Martinovich, A.A., Klin. Mikrobiol. Antimirob. Khimioter., 2010, vol. 12, pp. 96–105.

    Google Scholar 

  2. Bacteriophage Acinetobacter baumannii Strain AP22 for Identification of Bacterium Acinetobacter baumannii in Bacteriological Analysis of Clinical Material and Obtaining a Preparation to Combat with Hospital Infections Induced by A. baumannii, RF Patent No. 2439151, 2012.

  3. Akopyanz, N., Bukanov, N.O., Westblom, T.U., et al., Nucleic Acids Res., 1992, vol. 20, pp. 5137–5142.

    Article  PubMed  CAS  Google Scholar 

  4. Bikandi, J., San Millan, R., Rementeria, A., and Garaizar, J., Bioinformatics, 2004, vol. 20, pp. 798–799.

    Article  PubMed  CAS  Google Scholar 

  5. Brown, S., Young, H.K., and Amyes, S.G., Clin. Microbiol. Infect., 2005, vol. 11, pp. 15–23.

    Article  PubMed  CAS  Google Scholar 

  6. Chang, H.C., Wei, Y.F., Dijkshoorn, L., et al., J. Clin. Microbiol., 2005, vol. 43, pp. 1632–1639.

    Article  PubMed  CAS  Google Scholar 

  7. de Oliveira, A.C. and Damasceno, Q.S., Rev. Esp. Enferm., 2010, vol. 44, pp. 1118–1123.

    Article  Google Scholar 

  8. Ehrenstein, B., Bernards, A.T., Dijkshoorn, L., et al., J. Clin. Microbiol., 1996, vol. 34, pp. 2414–2420.

    PubMed  CAS  Google Scholar 

  9. Héritier, C., Poirel, L., Founier, P.E., et al., Antimicrob. Agents Chemother., 2005, vol. 49, pp. 4174–4179.

    Article  PubMed  Google Scholar 

  10. Lee, C.N., Tseng, T.T., Lin, J.W., et al., Appl. Environ. Microbiol., 2011, vol. 77, pp. 6755–6762.

    Article  PubMed  CAS  Google Scholar 

  11. Lin, N.T., Chiou, P.Y., Chang, K.C., et al., Res. Microbiol., 2010, vol. 161, pp. 308–314.

    Article  PubMed  CAS  Google Scholar 

  12. Peleg, A.Y., Seifert, H., and Paterson, D.L., Clin. Microbiol. Rev., 2008, vol. 21, pp. 538–582.

    Article  PubMed  CAS  Google Scholar 

  13. Perez, F., Hujer, A.M., Hujer, K.M., et al., Antimicrob. Agents Chemother., 2007, vol. 51, pp. 3471–3484.

    Article  PubMed  CAS  Google Scholar 

  14. Sambrook, J., Fritsch, E.F., and Maniatis, T., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor, New York: Cold Spring Harbor Lab. Press, 1989.

    Google Scholar 

  15. Towner, K.J., J. Hosp. Infect., 2009, vol. 73, pp. 355–363.

    Article  PubMed  CAS  Google Scholar 

  16. Turton, J.F., Woodford, N., Glover, J., et al., J. Clin. Microbiol., 2006, vol. 44, pp. 2974–2976.

    Article  PubMed  CAS  Google Scholar 

  17. Turton, J.F., Ward, M.E., Woodford, N., et al., FEMS Microbiol. Letts., 2006, vol. 258, pp. 72–77.

    Article  CAS  Google Scholar 

  18. Webster, C.A., Crow, M., Humphreys, H., and Towner, K.S., Eur. J. Clin. Microbiol. Infect. Dis., 1998, vol. 17, pp. 171–176.

    PubMed  CAS  Google Scholar 

  19. Wendt, C., Dietz, B., Dietz, E., and Ruden, H., J. Clin. Microbiol., 1997, vol. 35, pp. 1394–1397.

    PubMed  CAS  Google Scholar 

  20. Williams, J.C., Hanafey, M.K., Ragalski, J.A., and Tingey, S.V., Methods Enzymol., 1993, vol. 218, pp. 704–740.

    Article  PubMed  CAS  Google Scholar 

  21. Woodford, N., Ellington, M.J., and Coetlho, J.M., Int. J. Antimicrob. Agents, 2006, vol. 27, pp. 351–353.

    Article  PubMed  CAS  Google Scholar 

  22. Yang, H., Liang, L., Lin, S., and Jia, S.S., BMC Microbiol., 2010, vol. 10, p. 131.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Popova.

Additional information

Original Russian Text © A.V. Popova, V.P. Myakinina, M.E. Platonov, N.V. Volozhantsev, 2012, published in Molekulyarnaya Genetika, Mikrobiologiya i Virusologiya, 2012, No. 4, pp. 18–22.

About this article

Cite this article

Popova, A.V., Myakinina, V.P., Platonov, M.E. et al. Molecular genetic characterization of multidrug-resistant Acinetobacter baumannii strains and assessment of their sensitivity to phage AP22. Mol. Genet. Microbiol. Virol. 27, 154–159 (2012). https://doi.org/10.3103/S0891416812040064

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0891416812040064

Keywords

Navigation