Skip to main content
Log in

Propagation of Galactic Cosmic Rays in the Heliosphere during Minimum Solar Activity Periods

  • SPACE PHYSICS
  • Published:
Kinematics and Physics of Celestial Bodies Aims and scope Submit manuscript

Abstract

Based on the cosmic ray transport equation, the propagation of charged high-energy particles in heliospheric magnetic fields is considered. The transport equation solution is found in the approximation of low anisotropy in the angular distribution of particles. The energy distribution of galactic cosmic rays at a heliopause is used as a boundary condition. The energy spectrum of cosmic rays in a local interstellar space is considered to be known due to the outstanding results of space missions (Pioneer, Voyager, PAMELA, AMS-02, etc.). The flux density of cosmic rays is calculated in the periods of different solar magnetic polarity. It is shown that the intensity of galactic cosmic rays in positive magnetic polarity periods is maximum near the helioequator. In the periods when the interplanetary magnetic field has a negative polarity, the intensity of cosmic rays decreases with increasing heliolatitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. A. Z. Dolginov and I. N. Toptygin, “Multiple scattering of particles in a magnetic field with random inhomogeneities,” Sov. Phys. – JETP 24, 1771–1783 (1967).

    Google Scholar 

  2. L. I. Dorman, M. E. Kats, Yu. I. Fedorov, and B. A. Shakhov, “Energy balance of cosmic rays in multiple scattering in a randomly inhomogeneous magnetic field,” JETP Lett. 27, 374 (1978).

    Google Scholar 

  3. I. N. Toptygin, Cosmic Rays in Interplanetary Magnetic Fields (Nauka, Moscow, 1983) [in Russian].

    Google Scholar 

  4. B. A. Shakhov and Yu. L. Kolesnik, “Iteration method for solution of cosmic ray propagation theory boundary problems,” Kinematics Phys. Celestial Bodies 22, 101–108 (2006).

    Google Scholar 

  5. O. P. M. Aslam, D. Bisschoff, M. D. Ngobeni, M. S. Potgieter, et al., “Time and charge-sign dependence of the heliospheric modulation of cosmic rays,” Astrophys. J. 909, 215 (2021).

    Article  ADS  Google Scholar 

  6. D. Bisschoff, M. S. Potgieter, and O. P. M. Aslam, “New very local interstellar spectra for electrons, positrons, protons and light cosmic ray nuclei,” Astrophys. J. 878, 59 (2019).

    Article  ADS  Google Scholar 

  7. A. A. Burger, H. Moraal, and G. M. Webb, “Drift theory of charged particles in electric and magnetic fields,” Astrophys. Space Sci. 116, 107 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  8. R. A. Caballero-Lopez and H. Moraal, “Limitations of the force field equation to describe cosmic ray modulation,” J. Geophys. Res.: Space. Phys. 109, A01101 (2004).

    Article  ADS  Google Scholar 

  9. N. De Simone, V. D. Felice, J. Gieseler, M. Boesio, et al., “Latitudinal and radial gradients of galactic cosmic ray protons in the inner heliosphere — PAMELA and Ulysses observations,” Astrophys. Space Sci. Trans. 7, 425 (2011).

    Article  ADS  Google Scholar 

  10. L. I. Dorman and M. E. Katz, “Cosmic ray kinetics in space,” Space Sci. Rev. 20, 529 (1977).

    Article  ADS  Google Scholar 

  11. L. I. Dorman, M. E. Katz, Yu. I. Fedorov, and B. A. Shakhov, “Variation of cosmic ray energy in interplanetary space,” Astrophys. Space Sci. 94, 43 (1983).

    Article  ADS  Google Scholar 

  12. N. E. Engelbrecht, F. Effenberger, V. Florinski, M. S. Potgieter, et al., “Theory of cosmic ray transport in the heliosphere,” Space Sci. Rev. 218, 33 (2022).

    Article  ADS  Google Scholar 

  13. Yu. I. Fedorov and M. Stehlik, “The modulation of galactic cosmic ray intensity in the outer heliosphere,” Sol. Phys. 293, 119 (2017).

    Article  ADS  Google Scholar 

  14. Yu. I. Fedorov, B. A. Shakhov, and Yu. L. Kolesnyk, “Modulation of galactic cosmic ray intensity in the approximation of small anisotropy,” Kinematics Phys. Celestial Bodies 32, 181 (2022).

    Article  ADS  Google Scholar 

  15. M. A. Forman, J. R. Jokopii, and A. J. Owens, “Cosmic-ray streaming perpendicular to the mean magnetic field,” Astrophys. J. 192, 535 (1974).

    Article  ADS  Google Scholar 

  16. J. Gieseler, B. Heber, and K. Herbst, “An empirical modification of the force field approach to describe the modulation of galactic cosmic rays close to the Earth in a broad range of rigidities,” J. Geophys. Res.: Space Phys. 122, 10964–10979 (2017). arXiv 1710.10834

  17. J. Gieseler and B. Heber, “Spatial gradients of GCR protons in the inner heliosphere derived from Ulysses COSP-IN/KET and PAMELA measurements,” Astron. Astrophys. 589, A32 (2016).

    Article  ADS  Google Scholar 

  18. L. J. Gleeson and W. I. Axford, “Cosmic rays in the interplanetary medium,” Astrophys. J., Lett. 149, L115 (1967).

    Article  ADS  Google Scholar 

  19. L. J. Gleeson and W. I. Axford, “Solar modulation of galactic cosmic rays,” Astrophys. J. 159, 1011 (1968).

    Article  ADS  Google Scholar 

  20. L. J. Gleeson, “The equations describing the cosmic ray gas in the interplanetary region,” Planet Space Sci. 17, 31 (1969).

    Article  ADS  Google Scholar 

  21. L. J. Gleeson and G. M. Webb, “Energy changes of cosmic rays in the interplanetary region,” Astrophys. Space Sci. 58, 21 (1978).

    Article  ADS  Google Scholar 

  22. K. Hasselmann and G. Wibberenz, “Scattering of charged particles by random electromagnetic fields,” Z. Geophys. 34, 353 (1968).

    Google Scholar 

  23. B. Heber, W. Droege, P. Ferrando, et al., “Spatial variation of > 40 MeV/n nuclei fluxes observed during Ulysses rapid latitude scan,” Astron. Astrophys. 316, 538 (1996).

    ADS  Google Scholar 

  24. B. Heber and M. S. Potgieter, “Cosmic rays at high heliolatitudes,” Space Sci. Rev. 127, 117 (2006).

    Article  ADS  Google Scholar 

  25. B. Heber, J. Gieseler, P. Dunzlaff, R. Gome-Herrero, et al., “Latitudinal gradients of galactic cosmic rays during the 2007 solar minimum,” Astrophys. J. 689, 1443 (2008).

    Article  ADS  Google Scholar 

  26. B. Heber, “Cosmic rays through the solar Hale cycle. Insights from Ulysses,” Space Sci. Rev. 176, 265 (2013).

    Article  ADS  Google Scholar 

  27. P. A. Isenberg and J. R. Jokipii, “Gradient and curvature drifts in magnetic fields with arbitrary spatial variations,” Astrophys. J. 234, 746 (1979).

    Article  ADS  Google Scholar 

  28. J. R. Jokipii, E. H. Levy, and W. B. Hubbard, “Effects of particle drift on cosmic-ray transport. 1. General properties, applications to solar modulation,” Astrophys. J. 213, 861 (1977).

    Article  ADS  Google Scholar 

  29. J. R. Jokipii and B. Thomas, “Effects of drift on the transport of cosmic rays. 4. Modulation by a wavy interplanetary current sheet,” Astrophys. J. 249, 1115 (1981).

    Article  ADS  Google Scholar 

  30. Yu. L. Kolesnyk, P. Bobik, B. A. Shakhov, and M. Putis, “An analytically iterative method for solving problems of cosmic ray modulation,” Mon. Not. R. Astron. Soc. 470, 1073 (2017).

    Article  ADS  Google Scholar 

  31. J. Kota and J. R. Jokipii, “Effects of drift on the transport of cosmic rays. 6. A three-dimensional model including diffusion,” Astrophys. J. 265, 573 (1983).

    Article  ADS  Google Scholar 

  32. R. B. McKibben, J. J. Connel, C. Lopate, J. A. Simpson, and M. Zhang, “Observations of galactic cosmic rays and the anomalous helium during Ulysses passage from the south to the north solar pole,” Astron. Astrophys. 316, 547 (1996).

    ADS  Google Scholar 

  33. R. B. McKibben, “Three-dimensional solar-modulation of cosmic rays and anomalous components in the inner heliosphere,” Space Sci. Rev. 83, 21 (1998).

    Article  ADS  Google Scholar 

  34. D. C. Ndiitwani, O. P. M. Aslam, M. D. Ngobeni, M. S. Potgieter, et al., “The 3D numerical modeling on the temporal modulation of galactic protons as per PAMELA and AMS02 observation with changing solar activity,” in Proc. 37th Int. Cosmic Ray Conf. (ICRC2023), Nagoya, Japan, July 26–Aug. 3, 2023 (Sissa, Trieste, 2023), p. 1318.

  35. M. D. Ngobeni, O. P. M. Aslam, M. S. Potgieter, I. I. Ramokgaba, et al., “Modeling the modulation of galactic protons in two successive very quiet solar minima,” in Proc. 37th Int. Cosmic Ray Conf. (ICRC2023), Nagoya, Japan, July 26–Aug. 3, 2023 (Sissa, Trieste, 2023), p. 1236.

  36. E. N. Parker, “Dynamics of the interplanetary gas and magnetic field,” Astrophys. J. 128, 644 (1958).

    Article  ADS  Google Scholar 

  37. E. N. Parker, “The passage of energetic charged particles through interplanetary space,” Planet Space Sci. 13, 9 (1965).

    Article  ADS  Google Scholar 

  38. E. N. Parker, “A history of early work on the heliospheric magnetic field,” J. Geophys Res.: Space Phys. 106, 15797 (2001).

    Article  ADS  Google Scholar 

  39. M. S. Potgieter, “Solar modulation of cosmic rays,” Living Rev. Sol. Phys. 10, 3 (2013).

    Article  ADS  Google Scholar 

  40. Z. Shen, G. Qin, P. Zuo, F. Wei, and X. Ku, “Numerical modeling of latitudinal gradients for galactic cosmic-ray protons during solar minima: Comparing with Ulysses observations,” Astrophys. J., Suppl. Ser. 256, 18 (2021).

    Article  ADS  Google Scholar 

  41. I. H. Urch and L. J. Gleeson, “Galactic cosmic ray modulation from 1965–1970,” Astrophys. Space Sci. 17, 426 (1972).

    Article  ADS  Google Scholar 

  42. E. E. Vos and M. S. Potgieter, “New modeling of galactic proton modulation during the minimum of solar cycle 23/24,” Astrophys. J. 815, 119 (2015).

    Article  ADS  Google Scholar 

  43. E. E. Vos and M. S. Potgieter, “Global gradients for cosmic ray protons in the heliosphere during the solar minimum of cycle 23/24,” Sol. Phys. 291, 2181–2195 (2016). arXiv 1608.01688

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. I. Fedorov.

Ethics declarations

The author of this work declares that he has no conflicts of interest.

Additional information

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedorov, Y.I. Propagation of Galactic Cosmic Rays in the Heliosphere during Minimum Solar Activity Periods. Kinemat. Phys. Celest. Bodies 40, 64–76 (2024). https://doi.org/10.3103/S088459132402003X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S088459132402003X

Keywords:

Navigation