Skip to main content
Log in

Features of Ionospheric Effects of the Solar Eclipse Occurred on the Morning of October 25, 2022

  • SPACE PHYSICS
  • Published:
Kinematics and Physics of Celestial Bodies Aims and scope Submit manuscript

Abstracts

A solar eclipse (SE) leads to perturbations of all subsystems in the Earth–atmosphere–ionosphere–magnetosphere system and to perturbations of geophysical fields. Each SE leads to a whole series of physical and chemical processes occurring in the ionosphere. Along with common features, each SE has its own peculiarities with regard to these processes. These processes depend on the solar activity phase, time of the year, time of the day, geographic coordinates, atmospheric weather, space weather, magnitude of eclipse, etc. Therefore, studying these effects during each SE is an urgent task. The aim of this study is to describe the results of the analysis of the effects features of the SE which was observed shortly after sunrise on October 25, 2022 mainly at high latitudes. The data obtained from a network of space stations and navigation satellites moving over the region of partial SE were used for observations. It is found that the maximum decrease in the total electron content (TEC) in the ionosphere in these observations was 1.6–4.1 TECU, and its relative decrease reached 12–25%. The maximum decrease in the TEC was delayed 18–33 min in time with respect to the point in time when the maximum magnitude of the SE was reached. The duration of the response of the ionosphere to the SE was 120–180 min, which exceeded the eclipse duration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

REFERENCES

  1. L. F. Chernogor, Physical Effects of Solar Eclipses in Atmosphere and Geospace: Monograph (Khark. Nats. Univ. im. V. N. Karazina, Kharkiv, 2013) [in Russian].

  2. L. F. Chernogor, K. P. Garmash, Y. H. Zhdanko, S. G. Leus, and Y. Luo, “Features of ionospheric effects from the partial solar eclipse over the city of Kharkiv on 10 June 2021,” Radiofiz. Radioastron. 26, 326–343 (2021).

    ADS  Google Scholar 

  3. L. F. Chernogor, Yu. B. Mylovanov, V. L. Dorokhov, V. A. Podnos, A. M. Tsymbal, and M. B. Shevelev, “TEC variations in equatorial ionosphere during June 21, 2020 solar eclipse,” Visn. Khark. Nats. Univ. im. V. N. Karazina, Ser. Radiofiz. Elektron. 36, 49–65 (2022).

    Google Scholar 

  4. L. F. Chernogor, L. I. Mylovanova, Yu. B. Mylovanov, A. M. Tsymbal, and Y. Luo, “Effects from the June 10, 2021 solar eclipse in the ionosphere over Kharkiv: Results from ionosonde measurements,” Visn. Khark. Nats. Univ. im. V. N. Karazina, Ser. Radiofiz. Elektron. 35. 60–78 (2021).

    Google Scholar 

  5. L. F. Chernogor, Yu. B. Mylovanov, and Y. Luo, “Effects from the June 10, 2021 solar eclipse in the high-latitude ionosphere: Results of GPS observations,” Radiofiz. Radioastron. 27, 93–109 (2022).

    ADS  Google Scholar 

  6. E. Aa, S.-R. Zhang, P. J. Erickson, L. P. Goncharenko, A. J. Coster, O. F. Jonah, J. Lei, F. Huang, T. Dang, and L. Liu, “Coordinated ground-based and space-borne observations of ionospheric response to the annular solar eclipse on 26 December 2019,” J. Geophys. Res.: Space Phys. 125, e2020JA028296 (2020).

  7. B. J. Adekoya, B. O. Adebesin, T. W. David, S. O. Ikubanni, S. J. Adebiyi, O. S. Bolaji, and V. U. Chukwuma, “Solar-eclipse-induced perturbations at mid-latitude during the 21 August 2017 event,” Ann. Geophys. 37, 171–182 (2019).

    Article  ADS  Google Scholar 

  8. E. L. Afraimovich, E. A. Kosogorov, and O. S. Lesyuta, “Effects of the August 11, 1999 total solar eclipse as deduced from total electron content measurements at the GPS network,” J. Atmos. Sol.-Terr. Phys. 64, 1933–1941 (2002).

    Article  ADS  Google Scholar 

  9. E. L. Afraimovich, K. S. Palamartchouk, N. P. Perevalova, V. V. Chernukhov, A. V. Lukhnev, and V. T. Zalutsky, “Ionospheric effects of the solar eclipse of March 9, 1997, as deduced from GPS data,” Geophys. Res. Lett. 25, 465–468 (1998).

    Article  ADS  Google Scholar 

  10. R. K. Barad, S. Sripathi, and S. L. England, “Multi-instrument observations of the ionospheric response to the 26 December 2019 solar eclipse over Indian and Southeast Asian longitudes,” J. Geophys. Res.: Space. Phys. 127, e2022JA030330 (2022).

  11. S. Chapman, “The influence of a solar eclipse upon the upper atmospheric ionization,” Mon. Not. R. Astron. Soc. 92, 413–420 (1932).

    Article  ADS  Google Scholar 

  12. W. Chauvenet, Manual of Spherical and Practical Astronomy, 5th ed. (J. B. Lippincott, Philadelphia, Penn., 1891), Vol. 1.

    Google Scholar 

  13. I. Cherniak and I. Zakharenkova, “Ionospheric total electron content response to the great American solar eclipse of 21 August 2017,” Geophys. Res. Lett. 45, 1199–1208 (2018).

    Article  ADS  Google Scholar 

  14. L. F. Chernogor, “Wave processes in the ionosphere over europe that accompanied the solar eclipse of March 20, 2015,” Kinematics Phys. Celestial Bodies 32, 196–206 (2016).

    Article  ADS  Google Scholar 

  15. L. F. Chernogor, “Atmosphere–ionosphere response to solar eclipse over Kharkiv on March 20, 2015,” Geomagn. Aeron. (Engl. Transl.) 56, 592–603 (2016).

  16. L. F. Chernogor and K. P. Garmash, “Ionospheric processes during the partial solar eclipse above Kharkiv on June 10, 2021,” Kinematics Phys. Celestial Bodies 38, 61–72 (2022).

    Article  ADS  Google Scholar 

  17. L. F. Chernogor, K. P. Garmash, Q. Guo, Y. Luo, V. T. Rozumenko, and Y. Zheng, “Some features of the ionospheric radio wave characteristics over China observed during the solar eclipse of 21 June 2020,” Radio Sci. 57, e2022RS007492 (2022).

  18. L. F. Chernogor, K. P. Garmash, Q. Guo, V. T. Rozumenko, and Y. Zheng, “Ionospheric effects of the 5–6 January 2019 eclipse over the People’s Republic of China: Results from oblique sounding,” Ann. Geophys. 40, 585–603 (2022).

    Article  ADS  Google Scholar 

  19. L. F. Chernogor and Yu. B. Mylovanov, “Ionospheric effects of the August 11, 2018, solar eclipse over the People’s Republic of China,” Kinematics Phys. Celestial Bodies 36, 274–290 (2020).

    Article  ADS  Google Scholar 

  20. L. F. Chernogor and Yu. B. Mylovanov, “Ionospheric effects of the June 10, 2021, solar eclipse in the Arctic,” Kinematics Phys. Celestial Bodies 38, 197–209 (2022).

    Article  ADS  Google Scholar 

  21. V. U. Chukwuma and B. J. Adekoya, “The effects of March 20 2015 solar eclipse on the F2 layer in the mid-latitude,” Adv. Space Res. 58, 1720–1731 (2016).

    Article  ADS  Google Scholar 

  22. A. J. Coster, L. Goncharenko, S. R. Zhang, P. J. Erickson, W. Rideout, and J. Vierinen, “GNSS observations of ionospheric variations during the 21 August 2017 solar eclipse,” Geophys. Res. Lett. 44, 12041–12048 (2017).

    Article  ADS  Google Scholar 

  23. L. P. Goncharenko, P. J. Erickson, S.-R. Zhang, I. Galkin, A. J. Coster, and O. F. Jonah, “Ionospheric response to the solar eclipse of 21 August 2017 in Millstone Hill (42N) observations,” Geophys. Res. Lett. 45, 4601–4609 (2018).

    Article  ADS  Google Scholar 

  24. Q. Guo, L. F. Chernogor, K. P. Garmash, V. T. Rozumenko, and Y. Zheng, “Radio monitoring of dynamic processes in the ionosphere over China during the partial solar eclipse of 11 August 2018,” Radio Sci. 55, e2019RS006866 (2020).

  25. J. Harjosuwito, A. Husin, V. Dear, J. Muhamad, A. Faturahman, A. Bahar, Erlansyah, A. Syetiawan, and R. Pradipta, “Ionosonde and GPS total electron content observations during the 26 December 2019 annular solar eclipse over Indonesia,” Ann. Geophys. 41, 147–172 (2023).

    Article  ADS  Google Scholar 

  26. O. F. Jonah, L. Goncharenko, P. J. Erickson, S. Zhang, A. Coster, J. L. Chau, E. R. de Paula, and W. Rideout, “Anomalous behavior of the equatorial ionization anomaly during the 2 July 2019 solar eclipse,” J. Geophys. Res.: Space. Phys. 125, e2020JA027909 (2020).

  27. I. Paulino, C. A. O. B. Figueiredo, F. S. Rodrigues, R. A. Buriti, C. M. Wrasse, A. R. Paulino, D. Barros, H. Takahashi, I. S. Batista, A. F. Medeiros, P. P. Batista, M. A. Abdu, E. R. de Paula, C. M. Denardini, L. M. Lima, R. Y. C. Cueva, and J. J. Makela, “Atmospheric gravity waves observed in the nightglow following the 21 August 2017 total solar eclipse,” Geophys. Res. Lett. 47.e2020GL088924 (2020).

  28. L. C. A. Resende, Y. Zhu, C. M. Denardini, S. S. Chen, R. A. J. Chagas, L. A. Da Silva, C. S. Carmo, J. Moro, D. Barros, P. A. B. Nogueira, J. P. Marchezi, G. A. S. Picanço, P. Jauer, R. P. Silva, D. Silva, J. A. Carrasco, C. Wang, and Z. Liu, “A multi-instrumental and modeling analysis of the ionospheric responses to the solar eclipse on 14 December 2020 over the Brazilian region,” Ann. Geophys. 40, 191–203 (2022).

    Article  ADS  Google Scholar 

  29. S. M. Stankov, N. Bergeot, D. Berghmans, D. Bolsée, C. Bruyninx, J.-M. Chevalier, F. Clette, H. De Backer, J. De Keyser, E. D’Huys, M. Dominique, J. F. Lemaire, J. Magdalenić, C. Marqué, N. Pereira, V. Pierrard, D. Sapundjiev, D. B. Seaton, K. Stegen, R. Van der Linden, T. G. W. Verhulst, and M. J. West, “Multi-instrument observations of the solar eclipse on 20 March 2015 and its effects on the ionosphere over Belgium and Europe,” J. Space Weather Space Clim. 7, A19 (2017).

    Article  Google Scholar 

  30. Y.-Y. Sun, C.-H. Chen, X. Su, J. Wang, T. Yu, H.-R. Xu, and J.-Y. Liu, “Occurrence of nighttime irregularities and their scale evolution in the ionosphere due to the solar eclipse over East Asia on 21 June 2020,” J. Geophys. Res.: Space. Phys. 128, e2022JA030936 (2023).

  31. H. F. Tsai and J. Y. Liu, “Ionospheric total electron content response to solar eclipses,” J. Geophys. Res.: Space. Phys. 104, 12 657–12 668 (1999).

    Article  ADS  Google Scholar 

  32. S.-R. Zhang, P. J. Erickson, L. P. Goncharenko, A. J. Coster, W. Rideout, and J. Vierinen, “Ionospheric bow waves and perturbations induced by the 21 August 2017 solar eclipse,” Geophys. Res. Lett. 44, 12067–12073 (2017).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to V.L. Dorokhov for preparing the initial data for measurements and to Y.H. Zhdanko for his assistance in preparation of the manuscript.

Funding

This study was supported by the National Research Foundation of Ukraine (project no. 2020.02/0015 entitled “Theoretical and Experimental Studies of Global Perturbations of Natural and Man-Made Origins in the Earth–Atmosphere–Ionosphere System”). The study was additionally supported in part within State budget research projects assigned by the Ministry of Education and Science of Ukraine (state registration nos. 0121U109881 and 0122U001476).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. F. Chernogor.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chernogor, L.F., Mylovanov, Y.B. Features of Ionospheric Effects of the Solar Eclipse Occurred on the Morning of October 25, 2022. Kinemat. Phys. Celest. Bodies 40, 77–87 (2024). https://doi.org/10.3103/S0884591324020028

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0884591324020028

Keywords:

Navigation