Skip to main content
Log in

Solar Faculae and Flocculent Flows: Spectropolarimetric and Filter Observations in the Fe I, Ba II, and Ca II Lines

  • SOLAR PHYSICS
  • Published:
Kinematics and Physics of Celestial Bodies Aims and scope Submit manuscript

Abstract

The results of spectropolarimetric and filter observations of a faculae region located near the solar disc center in the Fe I 1564.3, Fe I 1565.8, Ba II 455.4, and Ca II H 396.8 nm lines are discussed. The observation data are obtained using the German vacuum tower telescope of Observatorio del Teide (Tenerife, Spain). Observations of the faculae region are made simultaneously in the three spectral regions: spectropolarimetric observations of the I, Q, U, and V Stokes parameters of two neutral iron lines Fe I 1564.8 and Fe I 1565.2 nm with a time resolution of 6 min 50 s; filter observations in 37 sections of the profile of the ionized barium Ba II 455.4 nm line with a time resolution of 25.6 s; and filter observations only in the center of the ionized calcium Ca II H 396.8 nm line with a time resolution of 4.9 s. The following observation data are studied: (1) the power of the magnetic field at the altitude of the formation of a continuous spectrum near the Fe I 1564.8 and Fe I 1565.2 nm lines (h ≈ −100 km); (2) wave velocities at fourteen altitude levels in the atmosphere of the Sun, at which radiation in the Ba II 455.4 nm spectral line is formed (h ≈ 0−650 km), and calculated phase shifts Φ(V,V) between fluctuations of velocity V in the photosphere at the height of radiation formation in the center of this line (h ≈ 650 km) and velocity fluctuations at the other thirteen altitude levels; and (3) the faculae contrast at the altitude of formation of the Ca II H 396.8 nm line center (h ≈ 1600 km). The following two trends are shown: (1) The power of velocity fluctuations greatly varies depending on the frequency of oscillations with a change in the altitude in the atmosphere of the Sun. At the altitudes ranging from 0 to 300 km, the maximum oscillation power occurs at a frequency of 3.5 mHz. Another maximum occurs near a frequency of 4.5 mHz at the altitude level of h = 650 km, and the maximum oscillation power at a frequency of approximately 1.5 mHz is quite noticeable at an altitude of h = 1600 km. (2) The contrast in the center of the Ca II H 396.8 nm line (h = 650 km) does not monotonically increase with an increase in the intensity of the photospheric magnetic field, as might be expected from general considerations. At large magnetic fields (B > 140 mT), this dependence becomes inverse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

REFERENCES

  1. V. Abbasvand, M. Sobotka, P. Heinzel, et al., “Chromospheric heating by acoustic waves compared to radiative cooling. II. Revised grid of models,” Astrophys. J. 890, 22–28 (2020).

    Article  ADS  CAS  Google Scholar 

  2. C. Beck, E. Khomenko, R. Rezaei, and M. Collados, “The energy of waves in the photosphere and lower chromosphere I. Velocity statistics,” Astron. Astrophys. 507, 453–467 (2009).

    Article  ADS  CAS  Google Scholar 

  3. T. E. Berger, L. H. M. Rouppe van der Voort, M. G. Löfdahl, et al., “Solar magnetic elements at 0.1 arcsec resolution. General appearance and magnetic structure,” Astron. Astrophys. 428, 613–628 (2004).

    Article  ADS  Google Scholar 

  4. P. S. Cally and E. Khomenko, “Fast-to-Alfvén mode conversion mediated by the Hall current. I. Cold plasma model,” Astrophys. J. 814, 106–116 (2015).

    Article  ADS  Google Scholar 

  5. M. Carlsson, R. F. Stein, Å. Nordlund, and G. B. Scharmer, “Observational manifestations of solar magnetoconvection: Center-to-limb variation,” Astrophys. J. 610, L137–L140 (2004).

    Article  ADS  Google Scholar 

  6. M. Collados, A. Lagg, J. J. Díaz García, et al., “Tenerife infrared polarimeter II. The physics of chromospheric plasmas,” in The Physics of Chromospheric Plasmas, Ed. by P. Heinzel, I. Dorotovič, and R. J. Rutten (Astronomical Society of the Pacific, San Francisco, Calif., 2007), in Ser.: ASP Conference Series, Vol. 368, pp. 611–616.

  7. O. Gingerich, R. W. Noyes, W. Kalkofen, and Y. Cuny, “The Harvard–Smithsonian reference atmosphere,” Sol. Phys. 18, 347–365 (1971).

    Article  ADS  CAS  Google Scholar 

  8. P. A. Gonzalez-Morales, E. Khomenko, N. Vitas, and M. Collados, “Joint action of Hall and ambipolar effects in 3D magneto-convection simulations of the quiet Sun. I. Dissipation and generation of waves,” Astron. Astrophys. 642, A220–A237 (2020).

    Article  ADS  Google Scholar 

  9. J. Hirzberger and E. Wiehr, “Solar limb faculae,” Astron. Astrophys. 438, 1059–1065 (2005).

    Article  ADS  CAS  Google Scholar 

  10. C. U. Keller, M. Schüssler, A. Vögler, and V. Zakharov, “On the origin of solar faculae,” Astrophys. J. Lett. 607, 59–62 (2004).

    Article  ADS  Google Scholar 

  11. E. Khomenko, “Simulations of waves in sunspots,” in Solar-Stellar Dynamos as Revealed by Helio- and Asteroseismology: GONG 2008/SOHO 21, Ed. by M. Dikpati, T. Arentoft, I. González Hernández, C. Lindsey, and F. Hill (Astronomical Society of the Pacific, San Francisco, Calif., 2009), in Ser: ASP Conference Series, Vol. 416, pp. 31–40.

  12. E. Khomenko and P. S. Cally, “Numerical simulations of conversion to Alfvén waves in sunspots,” Astrophys. J. 746, 68–77 (2012).

    Article  ADS  Google Scholar 

  13. P. Kobel, S. K. Solanki, and J. M. Borrero, “The continuum intensity as a function of magnetic field. I. Active region and quiet Sun magnetic elements,” Astron. Astrophys. 531, A112–A123 (2011).

    Article  ADS  Google Scholar 

  14. R. I. Kostik and E. Khomenko, “Observations of a bright plume in solar granulations,” Astron. Astrophys. 476, 341–347 (2007).

    Article  ADS  CAS  Google Scholar 

  15. R. Kostik and E. Khomenko, “Properties of convective motions in facular regions,” Astron. Astrophys. 545, A22–A30 (2012).

    Article  ADS  Google Scholar 

  16. R. Kostik and E. Khomenko, “Properties of oscillatory motions in a facular region,” Astron. Astrophys. 559, A107–A116 (2013).

    Article  ADS  Google Scholar 

  17. R. Kostik and E. Khomenko, “The possible origin of facular brightness in the solar atmosphere,” Astron. Astrophys. 589, A6–A12 (2016).

    Article  ADS  Google Scholar 

  18. R. Kostyk, “What are solar faculae?,” Kinematic Phys. Celestial Bodies 29, 32–36 (2013).

    Article  ADS  Google Scholar 

  19. R. I. Kostyk, “What mechanisms allow 5-minute oscillations in active regions of the solar surface to penetrate from the photosphere into the chromosphere?,” Kinematic Phys. Celestial Bodies 31, 188–192 (2015).

    Article  ADS  Google Scholar 

  20. R. I. Kostyk, “Effect of wave motions in the active region of the solar surface on convection,” Kinematic Phys. Celestial Bodies 34, 82–87 (2018).

    Article  ADS  Google Scholar 

  21. J. L. Linsky and H. E. Avrett, “The solar H and K lines,” Publ. Astron. Soc. Pac. 82, 169–248 (1970).

    Article  ADS  CAS  Google Scholar 

  22. M. Montagne, R. Mueller, and J. Vigneau, “The photosphere of the Sun: statistical correlations between magnetic field, intensity and velocity,” Astron. Astrophys. 311, 304–310 (1996).

    ADS  CAS  Google Scholar 

  23. G. Narayan and G. B. Scharmer, “Small-scale convection signatures associated with a strong plage solar magnetic field,” Astron. Astrophys. 524, A3–A18 (2010).

    Article  ADS  Google Scholar 

  24. S. P. Rajaguru, C. R. Sangeetha, and D. Tripathi, “Magnetic fields and the supply of low-frequency acoustic wave energy to the solar chromospheres,” Astrophys. J. 871, 155–169 (2019).

    Article  ADS  CAS  Google Scholar 

  25. R. Rezaei, J. H. M. J. Bruls, W. Schmidt, C. Beck, W. Kalkofen, and R. Schlichenmaier, “Reversal-free Ca II H profiles: A challenge for solar chromosphere modeling in quiet inter-network,” Astron. Astrophys. 484, 503–509 (2008).

    Article  ADS  Google Scholar 

  26. B. Ruiz Cobo and J. C. del Toro Iniesta, “Inversion of Stokes profiles,” Astrophys. J. 398, 375–385 (1992).

    Article  ADS  Google Scholar 

  27. E. H. Schroeter, D. Soltau, and E. Wiehr, “The German solar telescopes at the Observatorio del Teide,” Vistas Astron. 28, 519–525 (1985).

    Article  ADS  Google Scholar 

  28. N. G. Shchukina, V. L. Olshevsky, and E. V. Khomenko, “The solar Ba II 4554 Å line as a Doppler diagnostic: NLTE analysis in 3D hydrodynamical model,” Astron. Astrophys. 506, 1393–1404 (2009).

    Article  ADS  CAS  Google Scholar 

  29. S. Shelyag, E. Khomenko, Á. de Vicente, and D. Przybylski, “Heating of the partially ionized solar chromosphere by waves in magnetic structures,” Astrophys. J., Lett. 819, L11–L16 (2016).

    Article  ADS  Google Scholar 

  30. M. Sobotka, P. Heinzel, M. Svanda, et al., “Chromospheric heating by acoustic waves compared to radiative cooling,” Astrophys. J. 826, 49–56 (2016).

    Article  ADS  Google Scholar 

  31. Solanki S. K. “Small scale solar magnetic fields. An overview,” Space Sci. Rev. 63, 188 (1993).

    Article  Google Scholar 

  32. A. K. Srivastava, J. L. Ballester, P. S. Cally, et al., “Chromospheric heating by magnetohydrodynamic waves and instabilities,” J. Geophys. Res.: Space Phys. 126, e2020JA029097 (2021). arXiv 2104.02010

  33. M. Stangalini, D. del Moro, F. Berrilli, and S. M. Jeeries, “MHD wave transmission in the Sun’s atmosphere,” Astron. Astrophys. 534, A65–A71 (2011).

    Article  ADS  Google Scholar 

  34. R. Stebbins and P. R. Goode, “Waves in the solar photosphere,” Sol. Phys. 110, 237–253 (1987).

    Article  ADS  CAS  Google Scholar 

  35. M. I. Stodilka and R. I. Kostyk, “Solar faculae: Microturbulence as an indicator of inclined magnetic fields,” Kinematic Phys. Celestial Bodies 36, 153–160 (2020).

    Article  ADS  Google Scholar 

  36. M. I. Stodilka, A. I. Prysiazhnyi, and R. I. Kostyk, “Features of convection in the atmosphere layers of the solar facula,” Kinematic Phys. Celestial Bodies 35, 261–270 (2019).

    Article  ADS  Google Scholar 

  37. A. M. Title, K. P. Topka, T. D. Tarbell, et al., “On the differences between plage and quiet Sun in the solar photosphere,” Astrophys. J. 393, 782–794 (1992).

    Article  ADS  Google Scholar 

  38. K. P. Topka, T. D. Tarbell, and A. M. Title, “Properties of the smallest solar magnetic elements. II. Observations versus hot wall models of faculae,” Astrophys. J. 484, 479–486 (1997).

    Article  ADS  Google Scholar 

  39. A. Tritschler, W. Schmidt, K. Langhans, and T. Kentischer, “High-resolution solar spectroscopy with TESOS — Upgrade from a double to a triple system,” Sol. Phys. 211, 17–29 (2002).

    Article  ADS  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

I am sincerely grateful to Prof. Manuel Callados and Prof. Elena Khomenko, the members of the Canary Islands Institute of Astrophysics, for their assistance in obtaining observation data from the vacuum tower telescope (Observatory del Teide, Tenerife Island, Spain) and for providing us with the SIR software package and also to the reviewer for his useful comments.

Funding

This study was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. I. Kostik.

Ethics declarations

The author of this work declares that she has no conflicts of interest.

Additional information

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kostik, R.I. Solar Faculae and Flocculent Flows: Spectropolarimetric and Filter Observations in the Fe I, Ba II, and Ca II Lines. Kinemat. Phys. Celest. Bodies 40, 40–46 (2024). https://doi.org/10.3103/S0884591324010069

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0884591324010069

Keywords:

Navigation