Skip to main content
Log in

Propagation of the IGb14 Reference Frame on the Territory of Ukraine Based on Results of the Analysis of GNSS Observations for GPS Weeks 2106–2237

  • POSITIONAL AND THEORETICAL ASTRONOMY
  • Published:
Kinematics and Physics of Celestial Bodies Aims and scope Submit manuscript

Abstract

From May 17, 2020 to November 26, 2022 (GPS weeks 2106–2237) all products of the International GNSS Service (IGS)—precise ephemerides of GPS and GLONASS satellites, coordinates and velocities of permanent GNSS stations, etc.—were based on the IGb14 reference frame, the second IGS realization of the release of the International Terrestrial Reference Frame ITRF2014. Observations of GNSS satellites at permanent stations located in Ukraine and in Eastern Europe for this period were processed in the GNSS Data Analysis Centre of the Main Astronomical Observatory (MAO) NAS of Ukraine. The processing was carried out with the Bernese GNSS Software ver. 5.2 according to the requirements of the EUREF Permanent GNSS Network (EPN), that were relevant at that time. In total, observations on 344 GNSS stations, including 273 Ukrainian stations belonging to the following operators of GNSS networks: MAO NAS of Ukraine, StateGeoCadastre of Ukraine (UPN GNSS), PJSC System Solutions (System.NET), NU Lviv Polytechnic (GeoTerrace), Navigation and Geodetic Center (NGC.net), Kiev Institute of Land Relations (KyivPOS), Coordinate navigation maintenance system of Ukraine (NET.Spacecenter), E.P.S. LLC, UA–EUPOS/ZAKPOS, TNT TPI company (RTKHUB Network), and KMC LLC, were processed. The IGb14 reference frame was set by No-Net-Translation conditions on the coordinates of the EPN Class A stations from the EPN C2130 catalogue. As result, the station coordinates in the IGb14 reference frame and the zenith tropospheric delays for all stations were estimated. The mean repeatabilities for components of station coordinates for all weeks (the characteristics of the precision of the received daily and weekly solutions) are in the following ranges: for north component—from 0.62 to 1.35 mm (the average value is 0.98 mm), for east component—from 0.73 to 1.45 mm (the average value is 1.09 mm) with outliers of 2.39 and 1.81 mm for GPS weeks 2159 and 2168 respectively, for height component—from 2.52  to 6.36 mm (the average value is 3.89 mm).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. O. Khoda, “Analysis of GNSS observations (GPS weeks 1934–2105) for the propagation of the IGS14 reference frame on the territory of Ukraine,” Kinematics Phys. Celestial Bodies 39, 173–179 (2023). https://doi.org/10.3103/S0884591323030054

    Article  ADS  Google Scholar 

  2. Z. Altamimi, P. Rebischung, L. Métivier, and X. Collilieux, Analysis and results of ITRF2014, IERS Technical Note No. 38 (Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main, 2017).

  3. National Geodetic Survey, Antenna Calibrations (2022). https://geodesy.noaa.gov/ANTCAL/. Accessed March 1, 2023.

  4. Bernese GNSS Software Version 5.2, Ed. by R. Dach, S. Lutz, P. Walser, and P. Fridez, (Univ. of Bern, Bern, 2015). https://doi.org/10.7892/boris.72297

    Book  Google Scholar 

  5. J. Boehm, B. Werl, and H. Schuh, “Troposphere mapping functions for GPS and very long baseline interferometry from European centre for medium-range weather forecasts operational analysis data,” J. Geophys. Res.: Solid Earth 111, B02406 (2006). https://doi.org/10.1029/2005JB003629

    Article  ADS  Google Scholar 

  6. M. S. Bos and H. G. Scherneck, Ocean Tide Loading Provider (Onsala Space Observatory, 2022). http://holt.oso.chalmers.se/loading/. Accessed March 1, 2023.

  7. C. Bruyninx, J. Legrand, A. Fabian, and E. Pottiaux, “GNSS metadata and data validation in the EUREF Permanent Network,” GPS Solutions 23, 106 (2019). https://doi.org/10.1007/s10291-019-0880-9

    Article  Google Scholar 

  8. R. Dach, S. Schaer, D. Arnold, M. Kalarus, L. Prange, P. Stebler, A. Villiger, and A. Jaeggi, CODE Final Product Series for the IGS (Univ. of Bern, Bern, 2020). http://www.aiub.unibe.ch/download/CODE. Accessed March 1, 2023. https://doi.org/10.7892/boris.75876.4

  9. K. Dawidowicz, “IGS08.ATX to IGS14.ATX change dependent differences in a GNSS-derived position time series,” Acta Geodyn. Geomater. 15, 363–378 (2018). https://doi.org/10.13168/AGG.2018.0027

    Article  Google Scholar 

  10. Guidelines for the EPN Analysis Centres (2022). http://epncb.eu/_documentation/guidelines/guidelines_analysis_centres.pdf. Accessed March 1, 2023.

  11. IERS Conventions (2010), Ed. by G. Petit and B. Luzum, IERS Technical Note No. 36 (Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main, 2010).

  12. G. Johnston, A. Riddell, and G. Hausler, “The international GNSS service,” in Springer Handbook of Global Navigation Satellite Systems, Ed. by P. J. G. Teunissen, O. Montenbruck, 1st ed. (Springer-Verlag, Cham, 2017), pp. 967–982. https://doi.org/10.1007/978-3-319-42928-1

    Book  Google Scholar 

  13. T. Letellier, Etude des Ondes de Marée sur les Plateaux Continentaux, PhD Thesis (Univ. de Toulouse III, Ecole Doctorale des Sciences de l’Univers, de l’Environnement et de l’Espace, 2004).

  14. F. Lyard, F. Lefevre, T. Letellier, and O. Francis, “Modelling the global ocean tides: Modern insights from FES2004,” Ocean Dyn. 56, 394–415 (2006). https://doi.org/10.1007/s10236-006-0086-x

    Article  ADS  Google Scholar 

  15. N. K. Pavlis, S. A. Holmes, S. C. Kenyon, and J. K. Factor, “The development and evaluation of the Earth Gravitational Model 2008 (EGM2008),” J. Geophys. Res.: Solid Earth 117, B04406 (2012). https://doi.org/10.1029/2011JB008916

    Article  ADS  Google Scholar 

  16. R. D. Ray and R. M. Ponte, “Barometric tides from ECMWF operational analyses,” Ann. Geophys. 21, 1897–1910 (2003). https://doi.org/10.5194/angeo-21-1897-2003

    Article  ADS  Google Scholar 

  17. R. D. Ray, D. J. Steinberg, B. F. Chao, and D. E. Cartwright, “Diurnal and semidiurnal variations in the Earth’s rotation rate induced by oceanic tides,” Science 264, 830–832 (1994). https://doi.org/10.1126/science.264.5160.830

    Article  ADS  CAS  PubMed  Google Scholar 

  18. P. Rebischung, “Switch to IGb14 reference frame,” IGSMAIL-7921 (2020). https://lists.igs.org/pipermail/igsmail/2020/007917.html. Accessed March 1, 2023.

  19. P. Rebischung and R. Schmid, “IGS14/igs14.atx: A new framework for the IGS products,” Presented at AGU Fall Meeting, San Francisco, Calif., Dec. 12–16, 2016. https://www.researchgate.net/profile/Ralf-Schmid-2/ publication/311654495_IGS14igs14atx_a_new_framework_for_the_IGS_products/links/5852b2cf08ae0c0f32226ee7/ IGS14-igs14atx-a-new-framework-for-the-IGS-products.pdf. Accessed March 1, 2023.

  20. E. M. Standish, JPL Planetary and Lunar Ephemerides, DE405/LE405, Jet Propulsion Laboratory, Interoffice Memorandum, IOM 312.F-98-048 (1998). ftp://ssd.jpl.nasa.gov/pub/eph/planets/ioms/de405.iom.pdf. Accessed March 1, 2023.

Download references

Funding

The analysis of GNSS observations was carried out within the framework of the research project “High performance computing algorithm based on the cluster and cloud technologies in astrophysics and satellite geodesy” under the Target Program of Scientific Research of the National Academy of Sciences of Ukraine “Mathematical modeling in interdisciplinary research of processes and systems based on intelligent supercomputers, grid and cloud technologies” (Agreement no. 1, February 4, 2022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Khoda.

Ethics declarations

The author of this work declares that she has no conflicts of interest.

Additional information

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khoda, O. Propagation of the IGb14 Reference Frame on the Territory of Ukraine Based on Results of the Analysis of GNSS Observations for GPS Weeks 2106–2237. Kinemat. Phys. Celest. Bodies 40, 47–53 (2024). https://doi.org/10.3103/S0884591324010057

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0884591324010057

Keywords:

Navigation