Skip to main content
Log in

Acoustic-Gravity Wave Spectrum Filtering in the Horizontally Inhomogeneous Atmospheric Flow

  • SPACE PHYSICS
  • Published:
Kinematics and Physics of Celestial Bodies Aims and scope Submit manuscript

Abstract

The properties of acoustic-gravity waves (AGWs) in the atmosphere can be determined to a greater extent by the features of the propagation medium than by the sources of these disturbances. In the presence of spatial inhomogeneities of atmospheric parameters, significant deviations of AGW characteristics from theory are observed. This complicates the experimental diagnosis of waves and the search for a connection with their potential sources. AGW observations from the Dynamics Explorer 2 satellite indicates the predominance of waves with certain spectral characteristics in the polar thermosphere. It has been found that AGWs with large amplitudes are spatially consistent with areas of strong winds, while AGWs move mainly toward the wind. In order to explain the observed AGW properties, we investigate the filtering of the spectrum of these waves in the presence of a spatially inhomogeneous wind. It is shown that the direction and magnitude of the wave vector change in a special way in the oncoming inhomogeneous wind. In this case, with an increase in the speed of the headwind, the wave vector gradually tilts toward the horizontal plane. The vertical component of the wave vector decreases rapidly, and its horizontal component tends to some threshold value, which is predominant in observations. In addition, in the oncoming inhomogeneous flow, the frequencies and amplitudes of the waves increase. As a result, high-frequency wave harmonics with a small angle of inclination of the wave vector to the horizontal plane and a characteristic horizontal wavelength will prevail in a strong headwind from the continuous spectrum of atmospheric AGWs that can be generated by a hypothetical source. Since the wave vector and the group velocity vector in AGWs are almost perpendicular to each other, such waves provide efficient energy transfer in the vertical direction. In this regard, AGWs play an important role in the energy balance of the polar atmosphere by redistributing the energy of horizontal wind currents in the vertical direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. A. K. Fedorenko and E. I. Kryuchkov, “Wind control of the propagation of acoustic gravity waves in the polar atmosphere,” Geomagn. Aeron. (Engl. Transl.) 53, 377–388 (2013). https://doi.org/10.1134/S0016793213030055

  2. A. K. Fedorenko, Ye. I. Kryuchkov, O. K. Cheremnikh, and I. T. Zhuk, “Wave disturbances of the atmosphere in a spatially inhomogeneous flow,” Kosm. Nauka Tekhnol. 28 (6), 25–33 (2022). https://doi.org/10.15407/knit2022.06.025

    Article  Google Scholar 

  3. F. P. Bretherton and C. J. R. Garrett, “Wavetrains in inhomogeneous moving media,” Proc. R. Soc. A 302, 529–554 (1968). https://doi.org/10.1098/rspa.1968.0034

    Article  ADS  MATH  Google Scholar 

  4. O. K. Cheremnykh, A. K. Fedorenko, E. I. Kryuchkov, and Y. A. Selivanov, “Evanescent acoustic-gravity modes in the isothermal atmosphere: Systematization, applications to the Earth’s and Solar atmospheres,” Ann. Geophys. 37, 405–415 (2019). https://doi.org/10.5194/angeo-37-405-2019

    Article  ADS  Google Scholar 

  5. O. Cheremnykh, A. Fedorenko, Y. Selivanov, and S. Cheremnykh, “Continuous spectrum of evanescent acoustic-gravity waves in an isothermal atmosphere,” Mon. Not. R. Astron. Soc. 503, 5545–5553 (2021). https://doi.org/10.1093/mnras/stab845

    Article  ADS  Google Scholar 

  6. D. H. Cowling, H. D. Webb, and K. C. Yeh, “Group rays of internal gravity waves in a wind-stratified atmosphere,” J. Geophys. Res. 76, 213–220 (1971). https://doi.org/10.1029/JA076i001p00213

    Article  ADS  Google Scholar 

  7. G. G. Didebulidze, “Amplification/damping processes of atmospheric acoustic-gravity waves in horizontal winds with linear shear,” Phys. Lett. A 235, 65–70 (1997). https://doi.org/10.1016/S0375-9601(97)00524-0

    Article  ADS  Google Scholar 

  8. F. Ding, W. Wan, and H. Yuan, “The influence of background winds and attenuation on the propagation of atmospheric gravity waves,” J. Atmos. Sol.-Terr. Phys. 65, 857–869 (2003). https://doi.org/10.1016/S1364-6826(03)00090-7

    Article  ADS  Google Scholar 

  9. A. K. Fedorenko, A. V. Bespalova, O. K. Cheremnykh, and E. I. Kryuchkov, “A dominant acoustic-gravity mode in the polar thermosphere,” Ann. Geophys. 33, 101–108 (2015). https://doi.org/10.5194/angeo-33-101-2015

    Article  ADS  Google Scholar 

  10. A. K. Fedorenko, E. I. Kryuchkov, O. K. Cheremnykh, Yu. O. Klymenko, and Yu. M. Yampolski, “Peculiarities of acoustic-gravity waves in inhomogeneous flows of the polar thermosphere,” J. Atmos. Sol.-Terr. Phys. 178, 17–23 (2018). https://doi.org/10.1016/j.jastp.2018.05.009

    Article  ADS  Google Scholar 

  11. C. J. Heale and J. B. Snively, “Gravity wave propagation through a vertically and horizontally inhomogeneous background wind,” J. Geophys. Res: Atmos. 120, 5931–5950 (2015). https://doi.org/10.1002/2015JD023505

    Article  ADS  Google Scholar 

  12. C. O. Hines, “Internal gravity waves at ionospheric heights,” Can. J. Phys. 38, 1441–1481 (1960). https://doi.org/10.1139/p60-150

    Article  ADS  Google Scholar 

  13. J. L. Innis and M. Conde, “Characterization of acoustic-gravity waves in the upper thermosphere using Dynamics Explorer 2 Wind and Temperature Spectrometer (WATS) and Neutral Atmosphere Composition Spectrometer (NACS) data,” J. Geophys. Res.: Space Phys. 107 (A12), SIA 1-1–SIA 1-22 (2002). https://doi.org/10.1029/2002JA009370

  14. F. S. Johnson, W. B. Hanson, R. R. Hodges, W. R. Coley, G. R. Carignan, and N. W. Spencer, “Gravity waves near 300 km over the polar caps,” J. Geophys. Res.: Space Phys. 100, 23993–24002 (1995).

    Article  ADS  Google Scholar 

  15. T. L. Killeen, Y. I. Won, R. J. Nicieyewski, and A. G. Burns, “Upper thermosphere winds and temperatures in the geomagnetic polar cap: Solar cycle, geomagnetic activity, and interplanetary magnetic fields dependencies,” J. Geophys. Res. 100, 21327–21342 (1995). https://doi.org/10.1029/95JA01208

    Article  ADS  Google Scholar 

  16. J. Lighthill, Waves in Fluids (Cambridge Univ. Press, Cambridge, 1978).

    MATH  Google Scholar 

  17. H. Lühr, S. Rentz, P. Ritter, H. Liu, and K. Häusler, “Average thermospheric wind pattern over the polar regions, as observed by CHAMP,” Ann. Geophys. 25, 1093–1101 (2007). https://www.ann-geophys.net/ 25/1093/2007. https://doi.org/10.5194/angeo-25-1093-2007

    Article  ADS  Google Scholar 

  18. C. J. Nappo, An Introduction to Atmospheric Gravity Waves (Academic, Amsterdam, 2002), in Ser.: International Geophysics, Vol. 85.

  19. D. Rees, T. J. Fuller-Rowell, R. Gordon, T. L. Killeen, P. B. Hays, L. Wharton, and N. W. Spencer, “A comparison of win observations of the upper thermosphere from the Dynamics Explorer satellite with the predictions of a global time-dependent model,” Planet. Space Sci. 31, 1299–1314 (1983). https://doi.org/10.1016/0032-0633(83)90067-3

    Article  ADS  Google Scholar 

  20. A. D. Rogava and S. M. Mahajan, “Coupling of sound and internal waves in shear flows,” Phys. Rev. E 55, 1185 (1997). https://doi.org/10.1103/PhysRevE.55.1185

    Article  ADS  Google Scholar 

  21. B. R. Sutherland, Internal Gravity Waves (Cambridge Univ. Press, Cambridge 2010).

    Book  MATH  Google Scholar 

Download references

Funding

This work was supported by the National Research Foundation of Ukraine, project no. 2020.02/0015 Theoretical and Experimental Studies of Global Disturbances of Natural and Anthropogenic Origin in the Earth–Atmosphere–Ionosphere System.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. K. Fedorenko, E. I. Kryuchkov, O. K. Cheremnykh or I. T. Zhuk.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Pismenov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedorenko, A.K., Kryuchkov, E.I., Cheremnykh, O.K. et al. Acoustic-Gravity Wave Spectrum Filtering in the Horizontally Inhomogeneous Atmospheric Flow. Kinemat. Phys. Celest. Bodies 39, 217–224 (2023). https://doi.org/10.3103/S0884591323040049

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0884591323040049

Keywords:

Navigation