Skip to main content
Log in

Global Variations of the Total Electron Content in the Equatorial Ionosphere during the Annular Solar Eclipse of June 21, 2020

  • SPACE PHYSICS
  • Published:
Kinematics and Physics of Celestial Bodies Aims and scope Submit manuscript

Abstract

A solar eclipse (SE) causes recordable disturbances in all subsystems of the Earth–atmosphere–ionosphere–magnetosphere system and in geophysical fields. The response of the system to an SE substantially depends on the eclipse magnitude, the solar cycle phase, the atmospheric and space weather, the season, the time, and the observation coordinates. Manifestations of the response are also influenced by the observation technique. Despite the fact that the effect of a solar eclipse on the ionosphere has been studied for approximately 100 years, a number of unresolved issues remain. The purpose of this study is to describe the results of our analysis of temporal total electron content (TEC) variations caused by the annular solar eclipse on June 21, 2020, in the equatorial ionosphere. The authors analyzed 132 time dependences of the TEC that covered an extensive region with an eclipse. The maximum magnitude (Mmax = 0.9940) of the eclipse, which began at 06:39:59 UT, was observed in northern India in Uttarakhand and lasted 38 s. Space weather conditions on June 21, 2020, were favorable for studying the effects associated with the SE. To reveal the response of the ionosphere to the annular SE on June 21, 2020, the GPS signal recordings were processed. Time variations of the TEC in the ionosphere on reference days and on the SE day of June 21, 2020, were analyzed on a global scale. For this purpose, the results of measurements at twelve stations and eleven GPS satellites were used. The dependences of the absolute and relative TEC value decreases caused by the SE on a time of day are studied. The lowest value of the TEC decrease (–2…–3 TECU) was observed in the morning. In the daytime and in the evening hours, it reached –4…–6 TECU. The relative decrease in the TEC barely depended on a time of day and reached –30…–35%. No stable dependence of the TEC decrease on the eclipse magnitude was found. The relative value of the TEC decrease depended on the SE magnitude, i.e., smaller values of the SE magnitude corresponded to smaller values of the relative TEC decrease. The duration of the TEC reduction exceeded the duration of the eclipse by 1.5–2.5 h. The time of reaching the minimum TEC values in the daytime and the evening hours delayed by 10–20 min with respect to the time of reaching the maximum SE magnitude. Wave-like disturbances of the TEC were practically absent. Undisturbed TEC values and the TEC values disturbed by the eclipse substantially depended on the location of stations and the trajectory of satellites, which was associated with the influence of equatorial ionization anomaly. This is the main peculiarity of ionospheric effects of the SE at latitudes 0°–30° N.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. L. F. Chernogor, Physical Effects of Solar Eclipses in the Atmosphere and Geospace: Monograph (Khark. Nats. Univ. im. V. N. Karazina, Kharkiv, 2013) [in Russian].

  2. L. F. Chernogor and K. P. Garmash, “Ionospheric processes during the partial solar eclipse above Kharkiv on June 10, 2021,” Kinematics Phys. Celestial Bodies 38, 61–72 (2022). https://doi.org/10.3103/S0884591322020039

    Article  ADS  Google Scholar 

  3. L. F. Chernogor, K. P. Garmash, Y. H. Zhdanko, S. G. Leus, and Y. Luo, “Features of ionospheric effects from the partial solar eclipse over the city of Kharkiv on 10 June 2021,” Radiofiz. Radioastron. 26, 326–343 (2021).

    ADS  Google Scholar 

  4. L. F. Chernogor and Yu. B. Mylovanov, “Ionospheric effects of the June 10, 2021, solar eclipse in the Arctic,” Kinematics Phys. Celestial Bodies 38, 197–209 (2022). https://doi.org/10.3103/S088459132204002X

    Article  ADS  Google Scholar 

  5. L. F. Chernogor, Yu. B. Mylovanov, and Y. Luo, “Effects from the June 10, 2021 solar eclipse in the high-latitude ionosphere: Results of GPS observations,” Radiofiz. Radioastron. 27, 15–31 (2022).

    Google Scholar 

  6. E. Aa, S.-R. Zhang, P. J. Erickson, L. P. Goncharenko, A. J. Coster, O. F. Jonah, J. Lei, F. Huang, T. Dang, and L. Liu, “Coordinated ground-based and space-borne observations of ionospheric response to the annular solar eclipse on 26 December 2019,” J. Geophys. Res.: Space Phys. 125, e2020JA028296 (2020). https://doi.org/10.1029/2020JA028296

  7. E. Aa, S.-R. Zhang, H. Shen, S. Liu, and J. Li, “Local and conjugate ionospheric total electron content variation during the 21 June 2020 solar eclipse,” Adv. Space Res. 68, 3435–3454 (2021). https://doi.org/10.1016/j.asr.2021.06.015

    Article  ADS  Google Scholar 

  8. E. L. Afraimovich, K. S. Palamartchouk, N. P. Perevalova, V. V. Chernukhov, A. V. Lukhnev, and V. T. Zalutsky, “Ionospheric effects of the solar eclipse of March 9, 1997, as deduced from GPS data,” Geophys. Res. Lett. 25, 465–468 (1998). https://doi.org/10.1029/98GL00186

    Article  ADS  Google Scholar 

  9. C.-H. Chen, C.-H. C. Lin, and T. Matsuo, “Ionospheric responses to the 21 August 2017 solar eclipse by using data assimilation approach,” Prog. Earth Planet. Sci. 6, 13 (2019). https://doi.org/10.1186/s40645-019-0263-4

    Article  ADS  Google Scholar 

  10. K. Cheng, Y.-N. Huang, and S.-W. Chen, “Ionospheric effects of the solar eclipse of September 23, 1987, around the equatorial anomaly crest region,” J. Geophys. Res.: Space Phys. 97, 103–112 (1992). https://doi.org/10.1029/91JA02409

    Article  ADS  Google Scholar 

  11. Y. Chen, P. Feng, C. Liu, Y. Chen, L. Huang, J. Duan, Y. Hua, and X. Li, “Impact of the annular solar eclipse on June 21, 2020 on BPL time service performance,” AIP Adv. 11, 115003 (2021). https://doi.org/10.1063/5.0064445

    Article  ADS  Google Scholar 

  12. I. Cherniak and I. Zakharenkova, “Ionospheric total electron content response to the Great American Solar Eclipse of 21 August 2017,” Geophys. Res. Lett. 45, 1199–1208 (2018). https://doi.org/10.1002/2017GL075989

    Article  ADS  Google Scholar 

  13. R. K. Choudhary, St.-Maurice J. P., K. M. Ambili, S. Sunda, and B. M. Pathan, “The impact of the January 15, 2010, annular solar eclipse on the equatorial and low latitude ionospheric densities,” J. Geophys. Res.: Space Phys. 116, A09309 (2011). https://doi.org/10.1029/2011JA016504

    Article  ADS  Google Scholar 

  14. I. Cnossen, A. J. Ridley, L. P. Goncharenko, and B. J. Harding, “The response of the ionosphere-thermosphere system to the 21 August 2017 solar eclipse,” J. Geophys. Res.: Space Phys. 124, 7341–7355 (2019). https://doi.org/10.1029/2018JA026402

    Article  ADS  Google Scholar 

  15. A. J. Coster, L. Goncharenko, S.-R. Zhang, P. J. Erickson, W. Rideout, and J. Vierinen, “GNSS observations of ionospheric variations during the 21 August 2017 solar eclipse,” Geophys. Res. Lett. 44, 12041–12048 (2017). https://doi.org/10.1002/2017GL075774

    Article  ADS  Google Scholar 

  16. T. Dang, J. H. Lei, W. B. Wang, M. D. Yan, D. X. Ren, and F. Q. Huang, “Prediction of the thermospheric and ionospheric responses to the 21 June 2020 annular solar eclipse,” Earth Planet. Phys. 4, 231–237 (2020). https://doi.org/10.26464/epp2020032

    Article  ADS  Google Scholar 

  17. T. Dang, J. Lei, W. Wang, B. Zhang, A. Burns, H. Le, Q. Wu, H. Ruan, X. Dou, and W. Wan, “Global responses of the coupled thermosphere and ionosphere system to the August 2017 Great American Solar Eclipse,” J. Geophys. Res.: Space Phys. 123, 7040–7050 (2018). https://doi.org/10.1029/2018JA025566

    Article  ADS  Google Scholar 

  18. Q. Guo, L. F. Chernogor, K. P. Garmash, V. T. Rozumenko, and Y. Zheng, “Radio monitoring of dynamic processes in the ionosphere over China during the partial solar eclipse of 11 August 2018,” Radio Sci. 55, e2019RS006866 (2020). https://doi.org/10.1029/2019RS006866

  19. L. Huang, C. Liu, Y. Chen, X. Wang, P. Feng, and X. Li, “Observations and analysis of the impact of annular eclipse on 10 MHz short-wave signal in Sanya area on June 21, 2020,” AIP Adv. 11, 115317 (2021). https://doi.org/10.1063/5.0068778

    Article  ADS  Google Scholar 

  20. F. Huang, Q. Li, X. Shen, C. Xiong, R. Yan, S.-R. Zhang, W. Wang, E. Aa, J. Zhong, T. Dang, and J. Lei, “Ionospheric responses at low latitudes to the annular solar eclipse on 21 June 2020,” J. Geophys. Res.: Space Phys. 125, e2020JA028483 (2020). https://doi.org/10.1029/2020JA028483

  21. J. D. Huba and D. Drob, “SAMI3 prediction of the impact of the 21 August 2017 total solar eclipse on the ionosphere/plasmasphere system,” Geophys. Res. Lett. 44, 5928–5935 (2017). https://doi.org/10.1002/2017GL073549

    Article  ADS  Google Scholar 

  22. H. Le, L. Liu, Z. Ren, Y. Chen, and H. Zhang, “Effects of the 21 June 2020 solar eclipse on conjugate hemispheres: A modeling study,” J. Geophys. Res.: Space Phys. 125, e2020JA028344 (2020). https://doi.org/10.1029/2020JA028344

  23. J. Lei, T. Dang, W. Wang, A. Burns, B. Zhang, and H. Le, “Long-lasting response of the global thermosphere and ionosphere to the 21 August 2017 solar eclipse,” J. Geophys. Res.: Space Phys. 123, 4309–4316 (2018). https://doi.org/10.1029/2018JA025460

    Article  ADS  Google Scholar 

  24. J.-Y. Liu, T.-Y. Wu, Y.-Y. Sun, N. M. Pedatella, C.-Y. Lin, L. C. Chang, Y.-C. Chiu, C.-H. Lin, C.-H. Chen, F.-Y. Chang, I. T. Lee, C.-K. Chao, and A. Krankowski, “Lunar tide effects on ionospheric solar eclipse signatures: The August 21, 2017 event as an example,” J. Geophys. Res.: Space Phys. 125, e28472 (2020). https://doi.org/10.1029/2020JA028472

    Article  ADS  Google Scholar 

  25. C. Nayak and E. Yiğit, “GPS-TEC observation of gravity waves generated in the ionosphere during 21 August 2017 total solar eclipse,” J. Geophys. Res.: Space Phys. 123, 725–738 (2018). https://doi.org/10.1002/2017JA024845

    Article  ADS  Google Scholar 

  26. K. Patel and A. K. Singh, “Changes in atmospheric parameters due to annular solar eclipse of June 21, 2020, over India,” Indian J. Phys. 96, 1613–1624 (2021). https://doi.org/10.1007/s12648-021-02112-2

    Article  ADS  Google Scholar 

  27. G. W. Perry, C. Watson, A. D. Howarth, D. R. Themens, V. Foss, R. B. Langley, and A. W. Yau, “Topside ionospheric disturbances detected using radio occultation measurements during the August 2017 solar eclipse,” Geophys. Res. Lett. 46, 7069–7078 (2019). https://doi.org/10.1029/2019GL083195

    Article  ADS  Google Scholar 

  28. B. W. Reinisch, P. B. Dandenault, I. A. Galkin, R. Hamel, and P. G. Richards, “Investigation of the electron density variation during the 21 August 2017 solar eclipse,” Geophys. Res. Lett. 45, 1253–1261 (2018). https://doi.org/10.1002/2017GL076572

    Article  ADS  Google Scholar 

  29. E. Şentürk, M. Arqim Adil, and M. Saqib, “Ionospheric total electron content response to annular solar eclipse on June 21, 2020,” Adv. Space Res. 67, 1937–1947 (2021). https://doi.org/10.1016/j.asr.2020.12.024

    Article  ADS  Google Scholar 

  30. I. I. Shagimuratov, I. E. Zakharenkova, N. Y. Tepenitsyna, G. A. Yakimova, and I. I. Efishov, “Features of the ionospheric total electronic content response to the annular solar eclipse of June 21, 2020,” Geomagn. Aeron. 61, 756–762 (2021). https://doi.org/10.1134/S001679322105011X

    Article  ADS  Google Scholar 

  31. Y.-Y. Sun, C.-H. Chen, H. Qing, R. Xu, X. Su, C. Jiang, T. Yu, J. Wang, H. Xu, and K. Lin, “Nighttime ionosphere perturbed by the annular solar eclipse on June 21, 2020,” J. Geophys. Res.: Space Phys. 126, e2021JA029419 (2021). https://doi.org/10.1029/2021JA029419

  32. Y.-Y. Sun, J.-Y. Liu, C. C.-H. Lin, C.-Y. Lin, M.-H. Shen, C.-H. Chen, C.-H. Chen, and M.-Y. Chou, “Ionospheric bow wave induced by the moon shadow ship over the continent of United States on 21 August 2017,” Geophys. Res. Lett. 45, 538–544 (2018). https://doi.org/10.1002/2017GL075926

    Article  ADS  Google Scholar 

  33. G. Tripathi, S. B. Singh, S. Kumar, A. K. Singh, R. Singh, and A. K. Singh, “Effect of 21 June 2020 solar eclipse on the ionosphere using VLF and GPS observations and modeling,” Adv. Space Res. 69, 254–265 (2022). https://doi.org/10.1016/j.asr.2021.11.007

    Article  ADS  Google Scholar 

  34. H. F. Tsai and J. Y. Liu, “Ionospheric total electron content response to solar eclipses,” J. Geophys. Res.: Space Phys. 104, 12657–12668 (1999). https://doi.org/10.1029/1999JA900001

    Article  ADS  Google Scholar 

  35. J. Wang, X. Zuo, Y.-Y. Sun, T. Yu, Y. Wang, L. Qiu, T. Mao, X. Yan, N. Yang, Y. Qi, J. Lei, L. Sun, and B. Zhao, “Multilayered sporadic-E response to the annular solar eclipse on June 21, 2020,” Space Weather 19, e2020SW002643 (2021). https://doi.org/10.1029/2020SW002643

  36. W. Wang, T. Dang, J. Lei, S. Zhang, B. Zhang, and A. Burns, “Physical processes driving the response of the F2 region ionosphere to the 21 August 2017 Solar Eclipse at Millstone Hill,” J. Geophys. Res.: Space Phys. 124, 2978–2991 (2019). https://doi.org/10.1029/2018JA025479

    Article  ADS  Google Scholar 

  37. X. Wang, B. Li, F. Zhao, X. Luo, L. Huang, P. Feng, and X. Li, “Variation of low-frequency time-code signal field strength during the annular solar eclipse on 21 June 2020: Observation and analysis,” Sensors 21, 1216 (2021). https://doi.org/10.3390/s21041216

    Article  ADS  Google Scholar 

  38. C. Wu, A. J. Ridley, L. Goncharenko, and G. Chen, “GITM-data comparisons of the depletion and enhancement during the 2017 solar eclipse,” Geophys. Res. Lett. 45, 3319–3327 (2018). https://doi.org/10.1002/2018GL077409

    Article  ADS  Google Scholar 

  39. R. Zhang, H. Le, W. Li, H. Ma, Y. Yang, H. Huang, Q. Li, X. Zhao, H. Xie, W. Sun, G. Li, Y. Chen, H. Zhang, and L. Liu, “Multiple technique observations of the ionospheric responses to the 21 June 2020 solar eclipse,” J. Geophys. Res.: Space Phys. 125, e2020JA028450 (2020). https://doi.org/10.1029/2020JA028450

  40. S.-R. Zhang, P. J. Erickson, L. P. Goncharenko, A. J. Coster, W. Rideout, and J. Vierinen, “Ionospheric bow waves and perturbations induced by the 21 August 2017 solar eclipse,” Geophys. Res. Lett. 44, 12 067–12 073 (2017). https://doi.org/10.1002/2017GL076054

    Article  Google Scholar 

  41. S.-R. Zhang, P. J. Erickson, J. Vierinen, E. Aa, W. Rideout, A. J. Coster, and L. P. Goncharenko, “Conjugate ionospheric perturbation during the 2017 solar eclipse,” J. Geophys. Res.: Space Phys. 126, e2020JA028531 (2021). https://doi.org/10.1029/2020JA028531

Download references

ACKNOWLEDGMENTS

We are grateful to V.L. Dorokhov for his assistance in finding the source data and processing the measurement results and to M.B. Shevelev for his assistance in preparing materials for publication.

Funding

The study was supported by the National Research Foundation of Ukraine with project no. 2020.02/0015 Theoretical and Experimental Studies of Global Disturbances of Natural and Man-Made Origin in the Earth–Atmosphere–Ionosphere System. The study was also partially supported within State Budget Scientific Research Jobs set by the Ministry of Education and Culture of Ukraine (State registration nos. 0121U109881 and 0122U001476).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. F. Chernogor.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Kadkin

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chernogor, L.F., Mylovanov, Y.B. Global Variations of the Total Electron Content in the Equatorial Ionosphere during the Annular Solar Eclipse of June 21, 2020. Kinemat. Phys. Celest. Bodies 39, 181–203 (2023). https://doi.org/10.3103/S0884591323040025

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0884591323040025

Keywords:

Navigation