Skip to main content
Log in

Physical Effects of the Yushu Meteoroid: 3

  • SPACE PHYSICS
  • Published:
Kinematics and Physics of Celestial Bodies Aims and scope Submit manuscript

Abstract—

A comprehensive modeling of the processes in all geospheres caused by the fall and explosion of the Yushu meteoroid in the Qinghai Province (People’s Republic of China) on December 22, 2020, was performed. The magnetic, electrical, electromagnetic, ionospheric, and seismic effects, as well as the effects of acoustic-gravity waves, were estimated. It is shown that the magnetic effect of turbulence was insignificant. The magnetic effect of the ionospheric currents and the current in the meteoroid’s wake could be significant (~1 nT). Due to the capture of electrons in the field of the atmospheric gravity wave, the magnetic effect could reach the order of 1 nT. The effect of the external electric field could lead to a short-term current pulse of up to 104 A. The electrostatic effect could be accompanied by the accumulation of a charge of 1–10 mC with an electric field strength of approximately 1 MV/m. The flow of electric current in the wake could lead to the emission of an electromagnetic pulse in the frequency range of approximately 10 kHz with a strength of 3–30 V/m. It was found that the electromagnetic effect of infrasound could be significant (approximately 3–20 V/m and 10–60 nT). Absorption of the shock wave at the heights of the dynamo region of the ionosphere (100–150 km) could be accompanied by the generation of secondary atmospheric gravity waves with a relative amplitude of 0.1–1. The passage of the meteoroid led to the formation of a plasma wake and to a noticeable disturbance of not only the lower but also the upper atmosphere at distances of at least 1000 km. The occurrence of an electrophonic effect seems unlikely. The possibilities of generating ion and magnetic sound by infrasound as well as gradient-drift and drift-dissipative instabilities are discussed. The magnetic, electrical, and electromagnetic effects discussed in this article partially fill in the gaps in the theory of the physical effects of meteoroids in the Earth–atmosphere–ionosphere–magnetosphere system. The magnitude of the earthquake caused by the meteoroid explosion did not exceed 2.5. The average fall rate of celestial bodies similar to the Yushu meteoroid is 0.49 year–1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. V. V. Alpatov, V. A. Burov, Yu. P. Vagin, et al., Geophysical Conditions at the Explosion of the Chelyabinsk (Chebarkul) Meteoroid in February 15, 2013 (Inst. Prikl. Geofiz. im. E. K. Fedorova, Moscow, 2013) [in Russian].

  2. Asteroids and Comets: Chelyabinsk Event and the Study of a Meteorite Falling into the Lake Chebarkul: Proc. Int. Sci. and Pract. Conf., Chebarkul, Russia, June 21–22, 2013 (Krai Ra, Chelyabinsk, 2013).

  3. Sol. Syst. Res. (Thematic Issue). 47 (4) (2013).

  4. Atmosphere: A Handbook (Gidrometeoizdat, Leningrad, 1991) [in Russian].

  5. N. D. Borisov, A. V. Gurevich, and G. M. Milikh, Artificially Ionized Region in the Atmosphere (Inst. Zemn. Magn., Ionos. Rasprostr. Radiovoln im. N. V. Pushkova Ross. Akad. Nauk, Moscow, 1985) [in Russian].

  6. V. A. Bronshten, Physics of Meteor Phenomena (Nauka, Moscow, 1981; Springer-Verlag, Dordrecht, 1983).

  7. V. A. Bronshten, “A magneto-hydrodynamic mechanism for generating radio waves by bright fireballs,” Sol. Syst. Res. 17, 70–74 (1983).

    Google Scholar 

  8. V. A. Bronshten, “Electrical and electromagnetic phenomena associated with meteor flight,” Sol. Syst. Res. 25, 93–104 (1991).

    ADS  Google Scholar 

  9. V. A. Bronshten, “Magnetic effect of the Tungus meteorite,” Geomagn. Aeron. (Engl. Transl.) 42, 816–818 (2002).

  10. G. S. Golitsyn, G. N. Grigor’ev, and V. P. Dokuchaev, “Radiation of acoustic gravity waves during the motion of meteors in the atmosphere,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 13, 926–936 (1977).

    Google Scholar 

  11. L. D. Gol’dshtein and N. V. Zernov, Electromagnetic Fields and Waves (Sov. Radio, Moscow, 1971) [in Russian].

    Google Scholar 

  12. A. V. Gurevich and A. B. Shvartsburg, Nonlinear Theory of Radio Wave Propagation in the Ionosphere (Fiz.-Mat. Izd., Moscow, 1973) [in Russian].

    Google Scholar 

  13. Catastrophic Events Caused by Cosmic Objects, Ed. by V. V. Adushkin and I. V. Nemchinov (Akademkniga, Moscow, 2005; Springer-Verlag, Dordrecht, 2008).

  14. I. Kh. Kovaleva, A. G. Kovalev, S. I. Popel’, and O. P. Popova, “The electromagnetic effects generated in the Earth ionosphere during the meteoroid falling,” in Trigger Effects in Geosystems: Proc. All-Russian Seminar and Meeting, Moscow, Russia, June 18–21, 2013, Ed. by V. V. Adushkin and G. G. Kocheryan (GEOS, Moscow, 2013), pp. 41–50.

  15. I. Kh. Kovaleva, A. G. Kovalev, O. P. Popova, et al., “The electromagnetic effects generating in the Earth ionosphere during the meteoroid falling,” in Dynamic Processes in Geospheres: Collection of Scientific Papers of the Institute of Geosphere Dynamics, Russian Academy of Sciences, Special Issue, Vol. 5: Geodesic Effects of the Fall of Chelyabinsk Meteoroid (GEOS, Moscow, 2014), pp. 26–48 [in Russian].

  16. V. B. Lyatskii, Current Systems of Magnetospheric–Ionospheric Disturbances (Nauka, Leningrad, 1978) [in Russian].

    Google Scholar 

  17. The Chelyabinsk Meteorite — One Year on the Earth: Proc. All-Russian Sci. Conf., Chelyabinsk, Russia, Feb. 14–15, 2014, Ed. by N. A. Antipin, (Kamennyi Poyas, Chelyabinsk, 2014).

    Google Scholar 

  18. A. Yu. Ol’khovatov, “The electrophone sounds mechanisms generation analysis that accompany bolide effects,” Geomagn. Aeron. 33, 154–155 (1993).

    ADS  Google Scholar 

  19. Yu. P. Raizer, “A debate over the acquisition of an electric potential by a meteoroid,” Sol. Syst. Res. 37, 333–335 (2003).

    Article  ADS  Google Scholar 

  20. S. P. Solov’ev, Yu. S. Rybnov, and V. A. Kharlamov, “The synchronic disturbances of the acoustic and electric fields caused by artificial and natural sources,” in Trigger Effects in Geosystems: Proc. All-Russian Seminar and Meeting, Moscow, Russia, June 18–21, 2013, Ed. by V. V. Adushkin and G. G. Kocheryan (GEOS, Moscow, 2013), pp. 317–326.

  21. V. V. Surkov, Electromagnetic Effects Caused by Earthquakes and Explosions (Nats. Issled. Yad. Univ. Mosk. Inzh.-Fiz. Inst., Moscow, 2000) [in Russian].

  22. L. F. Chernogor, “Physics of Earth, atmosphere, and geospace from the standpoint of system paradigm,” Radiofiz. Radioastron. 8 (1), 59–106 (2003).

    Google Scholar 

  23. L. F. Chernogor, “Earth–atmosphere–ionosphere–magnetosphere as opened dynamic nonlinear physical system. 1,” Nelineinyi Mir 4, 655–697 (2006).

    Google Scholar 

  24. L. F. Chernogor, “Earth–atmosphere–ionosphere–magnetosphere as opened dynamic nonlinear physical system. 2,” Nelineinyi Mir 5, 225–246 (2007).

    Google Scholar 

  25. L. F. Chernogor, On the Nonlinearity in Nature and Science (V. N. Karazin Kharkiv National University, Kharkiv, 2008) [in Russian].

  26. L. F. Chernogor, “The ways in which variations in space and tropospheric weather impact the biosphere (humans),” Fiziol. Zh. 56, 25–40 (2010).

    Article  Google Scholar 

  27. L. F. Chernogor, “Oscillations of the geomagnetic field caused by the flight of Vitim bolide on September 24, 2002,” Geomagn. Aeron. (Engl. Transl.) 51, 116–130 (2011).

  28. L. F. Chernogor, Physics and Ecology of Disasters (V. N. Karazin Kharkiv National University, Kharkiv, 2012) [in Russian].

  29. L. F. Chernogor, “Large-scale disturbances in the Earth’s magnetic field associated with the Chelyabinsk meteorite event,” Radiofiz. Elektron. 4(18) (3), 47–54 (2013).

  30. L. F. Chernogor, “Plasma, electromagnetic and acoustic effects of meteorite "Chelyabinsk”,” Inzh. Fiz., No. 8, 23–40 (2013).

  31. L. F. Chernogor, “Physical effects of the Chelyabinsk meteorite passage,” Dopov. Nats. Akad. Nauk Ukr., No. 10, 97–104 (2013).

  32. L. F. Chernogor, “Geomagnetic field effects of the Chelyabinsk meteoroid,” Geomagn. Aeron. (Engl. Transl.) 54, 613–624 (2014).

  33. L. F. Chernogor, Physics of High-Power Radio Emissions in Geospace: Monograph (V. N. Karazin Kharkiv National University, Kharkiv, 2014) [in Russian].

  34. L. F. Chernogor, “Ionospheric effects of the Chelyabinsk meteoroid,” Geomagn. Aeron. (Engl. Transl.) 55, 353–368 (2015).

  35. L. F. Chernogor, “Disturbance in the lower ionosphere that accompanied the reentry of the Chelyabinsk cosmic body,” Cosmic Res. 55, 323–332 (2017).

    Article  ADS  Google Scholar 

  36. L. F. Chernogor, “Physical effects of the Romanian meteoroid. 1,” Kosm. Nauka Tekhnol. 24 (1), 49–70 (2018).

    Article  Google Scholar 

  37. L. F. Chernogor, “Physical effects of the Romanian meteoroid. 2,” Kosm. Nauka Tekhnol. 24 (2), 18–35 (2018).

    Article  Google Scholar 

  38. L. F. Chernogor, “Magnetospheric effects during the approach of the Chelyabinsk meteoroid,” Geomagn. Aeron. (Engl. Transl.) 58, 252–265 (2018).

  39. L. F. Chernogor, “Physical effects of the Lipetsk meteoroid: 1,” Kinematics Phys. Celestial Bodies 35, 174–188 (2019).

    Article  ADS  Google Scholar 

  40. L. F. Chernogor, “Physical effects of the Lipetsk meteoroid: 2,” Kinematics Phys. Celestial Bodies 35, 217–230 (2019).

    Article  ADS  Google Scholar 

  41. L. F. Chernogor, “Physical effects of the Lipetsk meteoroid: 3,” Kinematics Phys. Celestial Bodies 35, 271–285 (2019).

    Article  ADS  Google Scholar 

  42. L. F. Chernogor and K. P. Garmash, “Disturbances in geospace associated with the Chelyabinsk meteorite passage,” Radiofiz. Radioastron. 18 (3), 231–243 (2013).

    Google Scholar 

  43. L. F. Chernogor, “Physical effects of the Yushu meteoroid. 1,” Kinematics Phys. Celestial Bodies 38, 132–147 (2022).

    Article  ADS  Google Scholar 

  44. L. F. Chernogor, “Physical effects of the Yushu meteoroid. 2,” Kinematics Phys. Celestial Bodies 39 (3), 123–136 (2023).

    Google Scholar 

  45. L. F. Chernogor, Yu. B. Milovanov, V. N. Fedorenko, and A. M. Tsymbal, “Satellite observations of ionospheric disturbances which followed the Chelyabinsk meteorite passage,” Kosm. Nauka Tekhnol. 19 (6), 38–46 (2013).

    Article  Google Scholar 

  46. M. Beech and L. A. Foschini, “A space charge model for electrophonic bursters,” Astron. Astrophys. 345, L27–L31 (1999).

    ADS  Google Scholar 

  47. M. Beech, P. Brown, and J. Jones, “VLF detection of fireballs,” Earth, Moon, Planets. 68, 181–188 (1995).

    Article  ADS  Google Scholar 

  48. P. Brown, R. E. Spalding, D. O. Re Velle, et al., “The flux of small near-Earth objects colliding with Earth,” Nature 420, 294–296 (2002).

    Article  ADS  Google Scholar 

  49. L. F. Chernogor and V. T. Rozumenko, “Earth–atmosphere–geospace as an open nonlinear dynamical system,” Radiofiz. Radioastron. 13, 120–137 (2008).

    Google Scholar 

  50. L. F. Chernogor, “The Earth–atmosphere–geospace system: Main properties and processes,” Int. J. Remote Sens. 32, 3199–3218 (2011).

    Article  Google Scholar 

  51. L. F. Chernogor and V. T. Rozumenko, “The physical effects associated with Chelyabinsk meteorite’s passage,” Probl. At. Sci. Technol. 86 (4), 136–139 (2013).

    Google Scholar 

  52. Infrasound Monitoring for Atmospheric Studies, Ed. by A. Le Pichon, E. Blanc, and A. Hauchecorne (Springer-Verlag, Dordrecht, 2010).

    Google Scholar 

  53. V. Y. Kaznev, “Observational characteristics of electrophonic bolides: Statistical analysis,” Sol. Syst. Res. 28, 49–60 (1994).

    Google Scholar 

  54. C. S. L. Keay, “Anomalous sounds from the entry of meteor fireballs,” Science 210, 11–15 (1980).

    Article  ADS  Google Scholar 

  55. C. S. L. Keay, “Audible sounds excited by aurorae and meteor fireballs,” J. R. Astron. Soc. Can. 74, 253–260 (1980).

    ADS  Google Scholar 

  56. C. S. L. Keay, “Meteor fireball sounds identified,” Asteroids, Comets, Meteors 1991, 297–300 (1992).

    ADS  Google Scholar 

  57. C. S. L. Keay, “Electrophonic sounds from large meteor fireballs,” Meteoritics 27, 144–148 (1992).

    Article  ADS  Google Scholar 

  58. C. S. L. Keay, “Electrophonic sounds catalog,” WGN Obs. Rep. Ser. Int. Meteor. Org. 6, 151–172 (1994).

    Google Scholar 

  59. C. S. L. Keay and Z. Ceplecha, “Rate of observation of electrophonic meteor fireballs,” J. Geophys. Res. 99, 13163–13165 (1994).

    Article  ADS  Google Scholar 

  60. S. I. Popel, “Electromagnetic effects in the Earth’s ionosphere and magnetosphere caused by a cosmic body,” Planet. Space Sci. 45, 869–875 (1997).

    Article  ADS  Google Scholar 

  61. O. P. Popova, P. Jenniskens, V. Emel’yanenko, A. Kartashova, E. Biryukov, S. Khaibrakhmanov, V. Shuvalov, Y. Rybnov, A. Dudorov, V. I. Grokhovsky, D. D. Badyukov, Q.-Z. Yin, P. S. Gural, J. Albers, M. Granvik, L. G. Evers, J. Kuiper, V. Kharlamov, A. Solovyov, Yu. S. Rusakov, S. Korotkiy, I. Serdyuk, A. V. Korochantsev, M. Yu. Larionov, D. Glazachev, A. E. Mayer, G. Gisler, S. V. Gladkovsky, J. Wimpenny, M. E. Sanborn, A. Yamakawa, K. L. Verosub, D. J. Rowland, S. Roeske, N. W. Botto, J. M. Friedrich, M. E. Zolensky, L. Le, D. Ross, K. Ziegler, T. Nakamura, I. Ahn, J. I. Lee, Q. Zhou, X.-H. Li, Q.-L. Li, Liu Yu, G.-Q. Tang, T. Hiroi, D. Sears, I. A. Weinstein, A. S. Vokhmintsev, A. V. Ishchenko, P. Schmitt-Kopplin, N. Hertkorn, K. Nagao, M. K. Haba, M. Komatsu, and T. Mikouchi, “Chelyabinsk airburst, damage assessment, meteorite, and characterization,” Science 342, 1069–1073 (2013).

    Article  ADS  Google Scholar 

  62. O. P. Popova, P. Jenniskens, V. Emel’yanenko, A. Kartashova, E. Biryukov, S. Khaibrakhmanov, V. Shuvalov, Y. Rybnov, A. Dudorov, V. I. Grokhovsky, D. D. Badyukov, Q.-Z. Yin, P. S. Gural, J. Albers, M. Granvik, L. G. Evers, J. Kuiper, V. Kharlamov, A. Solovyov, Yu. S. Rusakov, S. Korotkiy, I. Serdyuk, A. V. Korochantsev, M. Yu. Larionov, D. Glazachev, A. E. Mayer, G. Gisler, S. V. Gladkovsky, J. Wimpenny, M. E. Sanborn, A. Yamakawa, K. L. Verosub, D. J. Rowland, S. Roeske, N. W. Botto, J. M. Friedrich, M. E. Zolensky, L. Le, D. Ross, K. Ziegler, T. Nakamura, I. Ahn, J. I. Lee, Q. Zhou, X.-H. Li, Q.-L. Li, Liu Yu, G.-Q. Tang, T. Hiroi, D. Sears, I. A. Weinstein, A. S. Vokhmintsev, A. V. Ishchenko, P. Schmitt-Kopplin, N. Hertkorn, K. Nagao, M. K. Haba, M. Komatsu, and T. Mikouchi, “Supplementary material for Chelyabinsk airburst, damage assessment, meteorite recovery, and characterization,” Science 342 (2013).

  63. O. Popova, “Chelyabinsk meteorite,” in Oxford Research Encyclopedia of Planetary Science (Oxford Univ. Press., Oxford, 2021). https://doi.org/10.1093/acrefore/9780190647926.013.22

    Book  Google Scholar 

  64. I. I. Zalyubovsky, L. F. Chernogor, and V. T. Rozumenko, “The Earth–atmosphere–geospace system: Main properties, processes and phenomena,” in Space Research in Ukraine. 2006–2008 (Kyiv, 2008), pp. 19–29.

Download references

Funding

This work was supported by the National Research Foundation of Ukraine, project no. 2020.02/0015 (Theoretical and Experimental Studies of Global Disturbances of Natural and Man-Made Origin in the Earth–Atmosphere–Ionosphere System), and the Ministry of Education and Science of Ukraine (project nos. 0121U109881 and 0122U001476).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. F. Chernogor.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by O. Pismenov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chernogor, L.F. Physical Effects of the Yushu Meteoroid: 3. Kinemat. Phys. Celest. Bodies 39, 137–153 (2023). https://doi.org/10.3103/S0884591323030030

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0884591323030030

Keywords:

Navigation