Skip to main content
Log in

Radiometric On-Orbit Calibration of the Aerosol-UA Mission Scanning Polarimeter: Technique, Design Elements, and Illumination Angles

  • INSTRUMENTS AND DEVICES
  • Published:
Kinematics and Physics of Celestial Bodies Aims and scope Submit manuscript

Abstract

The concept of a device for the radiometric calibration of photometers or polarimeters on the Earth orbit using the Sun is considered. The shortcomings and advantages for the designing and materials of the key elements are analyzed. The illumination conditions are determined for the working element of the radiometric calibration assembly of the ScanPol scanning polarimeter aboard the YuzhSat satellite platform for different configurations in different orbit locations. The satellite orbit sections where solar illumination is optimal for the working element of this assembly from the viewpoint of the relation between the incidence and observation angles and minimization of the light caused by reflection from the Earth surface, atmosphere, ScanPol structure elements, and satellite platform are specified. The obtained results are planned for use in the development of an optimal design for the ScanPol radiometric calibration assembly to provide a necessary radiometric measurements precision during the Aerosol-UA space mission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

REFERENCES

  1. V. K. Abalakin, The Basics of Emeritid Astronomer (Nauka, Moscow, 1979) [in Russian].

    Google Scholar 

  2. D. P. Duma, General Astrometry (Naukova Dumka, Kyiv, 2007) [in Ukrainian].

    Google Scholar 

  3. E. A. Kolenko, Experimental Laboratory Technology: Handbook (Politekhnika, St. Petersburg, 1994) [in Russian].

    Google Scholar 

  4. V. A. Zverev, E. V. Krivopustova, and T. V. Tochilina, Optical Materials. Part 2. Textbook for Designers of Optical Systems and Devices (S.-Peterb. Gos Univ., Inst. Tochn. Mekh. Opt., St. Petersburg, 2013) [in Russian].

  5. L. A. Mikheenko, T. A. Grishko, and T. V. Kotlyarenko, “Diffuse emitter of variable brightness based on a matrix of light-emitting diodes with a diffuser,” Vimiryuval’na Obchisl. Tekh. Tekhnol. Protsesakh 1, 74–81 (2013) [in Russian].

    Google Scholar 

  6. L. A. Mikheenko and N. V. Anikiienko, “The methods of improving the metrological characteristics of diffuse emitter of variable brightness,” Visn. NTUU KPI, Ser. Priladobuduvannya 48 (2), 118–124 (2014) [in Ukrainian].

    Google Scholar 

  7. L. A. Mikheenko and M. O. Pugina, “Working standard of brightness based on integrating sphere with diffuser,” Visn. Vinnits’k. Politekh. Inst. 4, 9–15 (2015) [in Ukrainian].

    Google Scholar 

  8. V. A. Panov, M. Ya. Kruger, V. V. Kulagin, V. V. Pogarev, A. M. Levinzon, I. M. Dolinskii, N. A. Mikhailov, B. G. Reznitskii, M. I. Kalinin, and R. M. Raguzin, Textbook for Designers of Optical-Mechanical Devices (Mashinostroenie, Leningrad, 1980) [in Russian].

    Google Scholar 

  9. I. I. Sinyavs’kii, G. P. Milinevs’kii, Yu. S. Ivanov, M. G. Sosonkin, V. O. Danylevsky, V. K. Rozenbush, A. P. Bovchalyuk, A. A. Lukenyuk, A. P. Shimkiv, and M. I. Mishchenko, “Methodology, hardware implementation, and validation of satellite remote sensing of atmospheric aerosols: First results of the Aerosol-UA space experiment development,” Kosm. Nauka Tekhnol. 21 (3), 9–17 (2015).

    Article  Google Scholar 

  10. I. I. Sinyavs’kii, Yu. S. Ivanov, M. G. Sosonkin, G. P. Milinevs’kii, and G. V. Koshman, “Multispectral imager-polarimeter of the “AEROSOL-UA” space project,” Kosm. Nauka Tekhnol. 24 (3), 23–32 (2018). https://doi.org/10.15407/knit2018.03.023

    Article  Google Scholar 

  11. E. I. Smerdov, M. V. Vaisero, M. G. Dobrishina, and V. V. Kavun, “Features of the integration of the YuzhSat microsatellite platform with various types of payload,” in Proc. 17th Ukrainian Conf. on Space Research, Odesa, Aug. 21–25, 2017, p. 145.

  12. J. P. Arenas and R. N. Margasahayam, “Noise and vibration of spacecraft structures,” Ing., Rev. Chil. Ing. 14, 251–264 (2006).

    Google Scholar 

  13. S. Baccaro, A. Piegari, I. Di Sarcina, and A. Cecilia, “Effect of gamma irradiation on optical components,” IEEE Trans. Nucl. Sci. 52, 1779–1784 (2005).

    Article  ADS  Google Scholar 

  14. S. Bäumer and H. Werij, “Space optics,” Adv. Opt. Tech. 7, 351–352 (2018).

    Article  Google Scholar 

  15. B. Cairns, E. Russel, and L. D. Travis, “The research scanning polarimeter: Calibration and ground-based measurements,” SPIE 3754, 186–196 (1999).

    ADS  Google Scholar 

  16. B. Cairns and I. Geogdzhayev, Aerosol Polarimetry Sensor Calibration, Document GSFC 421, 7-70-03 (GSFC, Greenbelt, Md., 2010).

  17. N. L. Chrien, C. J. Bruegge, and R. R. Ando, “Multi-angle imaging spectroradiometer (MISR) on-board calibrator (OBC) in-flight performance studies,” IEEE Trans. Geosci. Remote Sens. 40, 1493–1499 (2002).

    Article  ADS  Google Scholar 

  18. F. J. J. Clarke, F. A. Garforth, and D. J. Parry, “Goniophotometric and polarization properties of white reflection standard materials,” Light. Res. Technol. 15 (3), 133–149 (1983).

    Article  Google Scholar 

  19. M. Dinguirard and P. N. Slater, “Calibration of space-multispectral imaging sensors: A review,” Remote Sens. Environ. 68, 194–205 (1999). https://doi.org/10.1016/S0034-4257(98)00111-4

    Article  ADS  Google Scholar 

  20. M. R. Dobber, R. J. Dirksen, P. F. Levelt, G. H. J. van den Oord, R. H. M. Voors, Q. Kleipool, G. Jaross, M. Kowalewski, E. Hilsenrath, G. W. Leppelmeier, J. de Vries, W. Dierssen, and N. C. Rozemeijer, “Ozone monitoring instrument calibration,” IEEE Trans. Geosci. Remote Sens. 44, 1209–1238 (2006). https://doi.org/10.1109/TGRS.2006.869987

    Article  ADS  Google Scholar 

  21. O. Dubovik, Z. Li, M. I. Mishchenko, D. Tanre, Y. Karol, B. Bojkov, B. Cairns, D. J. Diner, W. R. Espinosa, P. Goloub, X. Gu, O. Hasekamp, J. Hong, W. Hou, K. D. Knobelspiesse, J. Landgraf, L. Li, P. Litvinov, Y. Liu, A. Lopatin, T. Marbach, H. Maring, V. Martins, Y. Meijer, G. Milinevsky, S. Mukai, F. Parol, Y. Qiao, L. Remer, J. Rietjens, I. Sano, P. Stammes, S. Stamnes, X. Sun, P. Tabary, L. D. Travis, F. Waquet, F. Xu, C. Yan, and D. Yin, “Polarimetric remote sensing of atmospheric aerosols: Instruments, methodologies, results, and perspectives,” J. Quant. Spectrosc. Radiat. Transfer 224, 474–511 (2019). https://doi.org/10.1016/j.jqsrt.2018.11.024

    Article  ADS  Google Scholar 

  22. O. S. Dymshits, A. A. Zhilin, and A. V. Shashkin, “The new SOO-U6 and SOO-I8 light-scattering glass-ceramics,” J. Opt. Technol. 76, 158–159 (2009). https://doi.org/10.1364/JOT.76.000158

    Article  Google Scholar 

  23. R. E. Eplee, Jr. G. Meister, F. S. Patt, R. A. Barnes, S. W. Bailey, B. A. Franz, and C. R. McClain, “On-orbit calibration of SeaWiFS,” Appl. Opt. 51, 8702–8730 (2012).

    Article  ADS  Google Scholar 

  24. Explanatory Supplement to the Astronomical Almanac, Ed. by P. K. Seidelmann (Univ. Science Books, Mill Valley, Calif., 1992).

    Google Scholar 

  25. R. P. Galvin, “Transmissive diffuser with a layer of polytetrafluoroethylene on the output surface for use with an on-orbit radiometric calibration,” US Patent No. 7482572 B1 (2009).

  26. D. Garoli, L. De Marcos, J. Larruquert, A. Corso, R. Zaccaria, and M. Pelizzo, “Mirrors for space telescopes: Degradation issues,” Appl. Sci. 10, 7538 (2020).

    Article  Google Scholar 

  27. G. T. Georgiev and J. J. Butler, “BRDF study of gray-scale Spectralon,” Proc. SPIE 7081, 708107 (2008).

    Article  Google Scholar 

  28. B. Gérard, J.-L. Deuzé, M. Herman, Y. J. Kaufman, P. Lallart, C. Oudard, L. A. Remer, B. Roger, B. Six, and D. Tanre, “Comparisons between POLDER 2 and MODIS/Terra aerosol retrievals over ocean,” J. Geophys. Res.: Atmos. 110, D24211 (2005). https://doi.org/10.1029/2005JD006218

    Article  ADS  Google Scholar 

  29. A. Höpe, “Diffuse reflectance and transmittance,” Exp. Methods Phys. Sci. 46, 179–219 (2014). https://doi.org/10.1016/B978-0-12-386022-4.00006-6

    Article  Google Scholar 

  30. R. A. Keski-Kuha, C. W. Bowers, M. A. Quijada, J. B. Heaney, B. Gallagher, A. McKay, and I. Stevenson, “James Webb Space Telescope optical telescope element mirror coatings,” Proc. SPIE 8442, 84422J (2012).

    Article  ADS  Google Scholar 

  31. X. Lei, S. Zhu, Z. Li, J. Hong, Z. Liu, F. Tao, P. Zou, M. Song, and C. Li, “Integration model of POSP measurement spatial response function,” Opt. Express 28, 25480–25489 (2020). https://doi.org/10.1364/OE.393897

    Article  ADS  Google Scholar 

  32. G. Milinevsky, Y. Oberemok, I. Syniavskyi, A. Bovchaliuk, I. Kolomiets, I. Fesianov, and Y. Wang, “Calibration model of polarimeters on board the Aerosol-UA space mission,” J. Quant. Spectrosc. Radiat. Transfer 229, 92–105 (2019). https://doi.org/10.1016/j.jqsrt.2019.03.007

    Article  ADS  Google Scholar 

  33. G. Milinevsky, Ya. Yatskiv, O. Degtyaryov, I. Syniavskyi, M. Mishchenko, V. Rosenbush, Yu. Ivanov, A. Makarov, A. Bovchaliuk, V. Danylevsky, M. Sosonkin, S. Moskalov, V. Bovchaliuk, A. Lukenyuk, A. Shymkiv, and E. Udodov, “New satellite project Aerosol-UA: Remote sensing of aerosols in the terrestrial atmosphere,” Acta Astronaut. 123, 292–300 (2016). http://www.sciencedirect.com/science/journal/00945765/123.

    Article  ADS  Google Scholar 

  34. H. Noble, W. T. Lam, G. Smith, S. McClain, and R. A. Chipman, “Polarization scattering from a Spectralon calibration sample,” Proc. SPIE 6682, 668219 (2007).

    Article  Google Scholar 

  35. R. Pawluczyk, “Holographic diffusers,” Proc. SPIE 2042, 156–169 (1993).

    Article  ADS  Google Scholar 

  36. R. J. Peralta, C. Nardell, B. Cairns, E. E. Russell, L. D. Travis, M. I. Mishchenko, B. A. Fafaul, and R. J. Hooker, “Aerosol polarimetry sensor for the Glory mission,” in Proc. MIPPR 2007: Automatic Target Recognition and Image Analysis, and Multispectral Image Acquisition, Wuhan, China, Nov. 15–17, 2007; Proc. SPIE 6786, 67865L (2007). https://doi.org/10.1117/12.783307

    Article  ADS  Google Scholar 

  37. S. Persh, Y. J. Shaham, O. Benami, B. Cairns, M. I. Mishchenko, J. D. Hein, and B. A. Fafaul, “Ground performance measurements of the glory aerosol polarimetry sensor,” Proc. SPIE 7807, 780703-1–780703-12 (2010). https://doi.org/10.1117/12.862029

    Article  Google Scholar 

  38. Reflectance Characteristics of Accuflect™ Light Reflecting Ceramic (Accuratus Corporation. 2010). http://accuratus.com.

  39. T. D. Scharton, “Vibration and acoustic testing of spacecraft,” Sound Vib. 36 (6), 14–18 (2002).

    Google Scholar 

  40. Shimadzu, “Example of reflectance measurement using integrating sphere: difference of spectra depending on white reference plate,” Shimadzu Excellence Sci. Appl. News, No. A639 (2021). https://www.shimadzu.com/an/.

  41. C. Soares and R. Mikatarian, “Understanding and control of external contamination on the international space station,” in Proc. 9th Int. Symp. on Materials in a Space Environment, Noordwijk, The Netherlands, June 16–20, 2003 (European Space Agency, Noordwijk, 2003), pp. 189–195.

  42. E. M. Standish, JPL Planetary and Lunar Ephemerides, DE405/LE405, JPL IOM 312, F-98-048 (1998).

    Google Scholar 

  43. J. Sun and X. Xiong, “Solar and lunar observation planning for Earth-observing sensors,” Proc. SPIE 8176, 817610-1–817610-10 (2011). https://doi.org/10.1117/12.897751

    Article  Google Scholar 

  44. A. Symmons and M. Lifshotz, Field Guide to Infrared Optical Materials (SPIE, Bellingham, Wash., 2021). https://www.spiedigitallibrary.org/ebooks.

  45. I. Syniavskyi, Ye. Oberemok, V. Danylevsky, A. Bovchaliuk, I. Fesianov, G. Milinevsky, S. Savenkov, Yu. Yukhymchuk, M. Sosonkin, and Yu. Ivanov, “Aerosol-UA satellite mission for the polarimetric study of aerosols in the atmosphere,” J. Quant. Spectrosc. Radiat. Transfer 267, 107601 (2021). https://doi.org/10.1016/j.jqsrt.2021.107601

    Article  Google Scholar 

  46. I. Syniavskyi, Ye. Oberemok, Yu. Ivanov, and M. Sosonkin, “Multispectral polarization state analyzer of scanning polarimeter ScanPol,” Int. J. Opt. 2020, 1695658 (2020). https://doi.org/10.1155/2020/1695658

    Article  Google Scholar 

  47. I. Syniavskyi, Ye. Oberemok, Yu. Ivanov, M. Sosonkin, V. Kireyev, and K. Akinin, “Scan mirror assembly for the multispectral scanning polarimeter of Aerosol-UA space mission,” Int. J. Opt. 2021, 8854505 (2021). https://doi.org/10.1155/2021/8854505

    Article  Google Scholar 

  48. D. Tanré, Y. J. Kaufman, M. Herman, and S. Mattoo, “Remote sensing of aerosol properties over oceans using the MODIS/EOS spectral radiances,” J. Geophys. Res.: Atmos. 102, 16971–16988 (1997). https://doi.org/10.1029/96JD03437

    Article  ADS  Google Scholar 

  49. S. Wadle and R. S. Lakes, “Holographic diffusers: Polarization effects,” Opt. Eng. 33, 1084–1088 (1994).

    Article  ADS  Google Scholar 

  50. S. Wadle, D. Wuest, J. Cantalupo, and R. S. Lakes, “Holographic diffusers,” Opt. Eng. 33, 213–218 (1994).

    Article  ADS  Google Scholar 

  51. Z. Wang, X. Xiong, J. Fulbright, and N. Lei, “VIIRS day/night band radiometric calibration stability monitoring using the Moon,” J. Geophys. Res.: Atmos. 122, 5616–5624 (2017). https://doi.org/10.1002/2016JD026372

    Article  ADS  Google Scholar 

  52. W. Wang, L.-M. Zhang, W. Xu, X.-L. Si, and W.-X. Huang, “A method for monitoring solar diffuser’s bidirectional reflectance distribution function degradation in geostationary orbit,” Eur. J. Remote Sens. 53 (1), 132–144 (2020). https://doi.org/10.1080/22797254.2020.1747948

    Article  Google Scholar 

  53. V. R. Weidner, White Opal Glass Diffuse Spectral Reflectance Standards for the Visible Spectrum (SRM’s 2015 and 2016), National Bureau of Standards Special Publication No. 260-82 (U.S. Government Printing Office, Washington, DC, 1983).

  54. The Infrared Handbook, Ed. by W. L. Wolf, and G. J. Zissis (Washington, DC, 1978).

    Google Scholar 

  55. X. Xiong, J. Sun, S. Xiong, and W. L. Barnes, “Using the Moon for MODIS on-orbit spatial characterization,” Proc. SPIE 5234, 480–487 (2004). https://doi.org/10.1117/12.510570

    Article  ADS  Google Scholar 

  56. X. Xiong and J. J. Butler, “MODIS and VIIRS calibration history and future outlook,” Remote Sens. 12, 2523-1–2523-23 (2020). https://doi.org/10.3390/rs12162523

  57. X. Xiong, J. Sun, W. Barnes, V. Salomonson, J. Esposito, H. Erives, and B. Guenther, “Multiyear On-orbit calibration and performance of Terra MODIS reflective solar bands,” IEEE Trans. Geosci. Remote Sens. 45, 879–889 (2007). https://doi.org/10.1109/TGRS.2006.890567

    Article  ADS  Google Scholar 

  58. X. Xiong, J. Sun, S. Xiong, and W. L. Barnes, “Using the Moon for MODIS on-orbit spatial characterization,” Proc. SPIE 5234, 480–487 (2004). https://doi.org/10.1117/12.510570

    Article  ADS  Google Scholar 

  59. H. C. Yang, B. Y. Yang, M. X. Song, P. Zou, X. B. Sun, and J. Hong, “Onboard polarimetric calibration methods of spaceborne scanning polarimeter,” Chin. J. Lasers 45, 1110002 (2018).

    Article  Google Scholar 

Download references

Funding

This study was supported by the National Academy of Sciences of Ukraine within the Target Complex Program of Scientific Space Explorations for 2018–2022 under agreement no. 03/22 Ukraine, Taras Shevchenko National University of Kyiv, under agreements nos. 20BF051-02 and BF/30-2021, and the International Center of Future Science (College of Physics, Jilin University, Changchun, China). This study was also supported in part by the Program of Studies and Innovations of the European Union “Horizon 2020” under grant agreement Marie Sklodowska no. 778349 GRASP-ACE and the Innovation Program under grant agreement ACTRIS-2 no. 654109. The authors are also grateful for support to the European Commission “Horizon 2020” financing project ERA-PLANET/SMURBS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. P. Milinevsky.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Glushachenkova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Syniavskyi, I.I., Danylevsky, V.O., Oberemok, Y.A. et al. Radiometric On-Orbit Calibration of the Aerosol-UA Mission Scanning Polarimeter: Technique, Design Elements, and Illumination Angles. Kinemat. Phys. Celest. Bodies 39, 49–69 (2023). https://doi.org/10.3103/S0884591323010075

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0884591323010075

Keywords:

Navigation