Skip to main content
Log in

Variation of the H Component of Geomagnetic Field: Relationship to the Ring and Field Aligned Currents

  • SPACE PHYSICS
  • Published:
Kinematics and Physics of Celestial Bodies Aims and scope Submit manuscript

Abstract

Disturbance of equatorial ring current during the geomagnetic storm has dominant effect on geomagnetic field. The short term irregular variation on geomagnetic field is characterized by interaction of solar-wind magnetic field and Earth’s magnetosphere, which develops time varying current in magnetosphere and ionosphere. This study represents the irregular variation on H component of Earth’s magnetic field during three intense geomagnetic storm events. Among the five selected stations, four are at low-latitude and remaining one is at middle latitude. All the stations recorded the maximum depression on H component during the main phase of storm but sudden storm commencements (SSCs) event before initial phase caused slight increase in magnitude. In each of the event, low-latitude stations recorded large perturbation on magnetic field as compared to the middle latitude station. This result supports the intensification of ring current as initiated by the transfer of plasma and energy through interplanetary coronal mass ejections (ICMEs) and finally causes falling off of H component. Kakadu station (southern latitude) showed maximum value of ΔH in second and third event, this result keeps up that mostly southern hemisphere station measures large decline on H component during storm time. The calculated value of ring current and field aligned current (FAC) showed extreme negative correlation with ΔH. This unique result reveals that ring current is not only a factor that cause disturbance on horizontal component of Earth’s magnetic field but FAC also has considerable effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

REFERENCES

  1. B. Adhikari, Hildcaa-Related Effects Recorded in Middle Low Latitude Magnetometers, PhD Thesis (Sao Jose dos Campos, Brasil, 2015).

  2. B. Adhikari, S. Dahal, N. Sapkota, P. Baruwal, B. Bhattarai, K. Khanal, and N. P. Chapagain, “Field-aligned current and polar cap potential and geomagnetic disturbances: A review of cross-correlation analysis,” Earth Space Sci. 5, 440–455 (2018).

    Article  ADS  Google Scholar 

  3. S. Alex, S. Mukherjee, and G. Lakhina, “Geomagnetic signatures during the intense geomagnetic storms of 29 October and 20 November 2003,” J. Atmos. Sol.-Terr. Phys. 68, 769–780 (2006).

    Article  ADS  Google Scholar 

  4. E. Astafyeva, I. Zakharenkova, J. Huba, E. Doornbos, and J. Van den IJssel, “Global ionospheric and thermospheric effects of the June 2015 geomagnetic disturbances: Multi-instrumental observations and modeling,” J. Geophys. Res.: Space Phys. 122, 11716–11742 (2017).

    ADS  Google Scholar 

  5. D. N. Baker, A. N. Jaynes, S. G. Kanekal, J. C. Foster, P. J. Erickson, J. F. Fennell, J. B. Blake, H. Zhao, X. Li, S. R. Elkington, and M. G. Henderson, “Highly relativistic radiation belt electron acceleration, transport, and loss: Large solar storm events of march and june 2015,” J. Geophys. Res.: Space Phys. 121, 6647–6660 (2016).

    Article  ADS  Google Scholar 

  6. K. Birkeland, The Norwegian Aurora Polaris Expedition 1902–1903 (H. Aschelhoug & Co., Christiania, 1913).

  7. L. Burlaga, E. Sittler, F. Mariani, and R. Schwenn, “Magnetic loop behind an interplanetary shock: Voyager, Helios, and Imp 8 observations,” J. Geophys. Res.: Space Phys. 86, 6673–6684 (1981).

    Article  ADS  Google Scholar 

  8. B. Chen, W. Xu, G. Chen, A. Du, Y. Wu, and X. Liu, “Latitudinal shift and tilt of the ring current during magnetic storms,” Chi. Sci. Bull. 54, 95–103 (2009).

    Article  Google Scholar 

  9. I. A. Daglis, R. M. Thorne, W. Baumjohann, and S. Orsini, “The terrestrial ring current: Origin, formation, and decay,” Rev. Geophys. 37, 407–438 (1999).

    Article  ADS  Google Scholar 

  10. A. J. De Abreu, P. R. Fagundes, M. Gende, O. S. Bolaji, R. De Jesus, and C. Brunini, “Investigation of ionospheric response to two moderate geomagnetic storms using GPS–TEC measurements in the South American and African sectors during the ascending phase of solar cycle 24,” Adv. Space Res. 53, 1313–1328 (2014).

    Article  ADS  Google Scholar 

  11. J. Gavoret, D. Gibert, M. Menvielle, and J. Le Mouël, “Long-term variations of the external and internal components of the earth’s magnetic field,” J. Geophys. Res.: Solid Earth 91, 4787–4796 (1986).

    Article  Google Scholar 

  12. C. S. Gillmor and J. R. Spreiter, Discovery of the Magnetosphere (American Geophysical Union, Washington, DC, 1997).

    Book  Google Scholar 

  13. W. D. Gonzalez and B. T. Tsurutani, “Criteria of interplanetary parameters causing intense magnetic storms (Dst<-100nT),” Planet. Space Sci. 35, 1101–1109 (1987).

    Article  ADS  Google Scholar 

  14. W. D. Gonzalez, J.-A Joselyn, Y. Kamide, H. W. Kroehl, G. Rostoker, B. T. Tsurutani, and V. Vasyliunas, “What is a geomagnetic storm?,” J. Geophys. Res.: Space Phys. 99, 5771–5792 (1994).

    Article  ADS  Google Scholar 

  15. W. D. Gonzalez, B. T. Tsurutani, and A. L. C. De Gonzalez, “Interplanetary origin of geomagnetic storms,” Space Sci. Rev. 88, 529–562 (1999).

    Article  ADS  Google Scholar 

  16. W. D. Gonzalez, E. Echer, A. Clua-Gonzalez, and B. T. Tsurutani, “Interplanetary origin of intense geomagnetic storms (dst<–100 nT) during solar cycle 23,” Geophys. Res. Lett. 34, L06101 (2007).

    Article  ADS  Google Scholar 

  17. N. Gopalswamy, S. Yashiro, G. Michalek, H. Xie, R. Lepping, and R. Howard, “Solar source of the largest geomagnetic storm of cycle 23,” Geophys. Res. Lett. 32, L12S09 (2005).

    Article  Google Scholar 

  18. J. T. Gosling, E. Hildner, R. M. MacQueen, R. H. Munro, A. I. Poland, and C. L. Ross, “Mass ejections from the Sun: A view from Skylab,” J. Geophys. Res. 79, 4581–4587 (1974).

    Article  ADS  Google Scholar 

  19. J. T. Gosling, C. T. Russel, E. R. Priest, and L. C. Lee, “Physics of magnetic flux ropes,” Geophys. Monogr. 58 (1990).

  20. C.-S. Huang, J. Foster, L. Goncharenko, P. Erickson, W. Rideout, and A. Coster, “A strong positive phase of ionospheric storms observed by the millstone hill incoherent scatter radar and global GPS network,” J. Geophys. Res.: Space Phys. 110, A06303 (2005).

    Article  ADS  Google Scholar 

  21. T. Iijima and T. A. Potemra, “The amplitude distribution of field-aligned currents at northern high latitudes observed by Triad,” J. Geophys. Res. 81, 2165–2174 (1976).

    Article  ADS  Google Scholar 

  22. T. Iijima and T. A. Potemra, “Field-aligned currents in the dayside cusp observed by Triad,” J. Geophys. Res. 81, 5971–5979 (1976).

    Article  ADS  Google Scholar 

  23. T. Iijima and T. A. Potemra, “Large-scale characteristics of field-aligned currents associated with substorms,” J. Geophys. Res.: Space Phys. 83, 599–615 (1978).

    Article  ADS  Google Scholar 

  24. T. Kikuchi, K. K. Hashimoto, and K. Nozaki, “Penetration of magnetospheric electric fields to the equator during a geomagnetic storm,” J. Geophys. Res.: Space Phys. 113, A06214 (2008).

    Article  ADS  Google Scholar 

  25. J. U. Kozyra, V. K. Jordanova, J. E. Borovsky, M. F. Thomsen, D. J. Knipp, D. S. Evans, D. J. McComas, and T. E. Cayton, “Effects of a high-density plasma sheet on ring current development during the November 2–6, 1993, magnetic storm,” J. Geophys. Res.: Space Phys. 103, 26285–26305 (1998).

    Article  ADS  Google Scholar 

  26. R. Lanza and A. Meloni, The Earth’s Magnetic Field (Springer-Verlag, Berlin, 2006).

    Google Scholar 

  27. J. Liu, W. Wang, A. Burns, X. Yue, S. Zhang, Y. Zhang, and C. Huang, “Profiles of ionospheric storm-enhanced density during the 17 March 2015 great storm,” J. Geophys. Res.: Space Phys. 121, 727–744 (2016).

    Article  ADS  Google Scholar 

  28. R. M. MacQueen, J. A. Eddy, J. T. Gosling, E. Hildner, R. H. Munro, G. A. Newkirk, Jr., A. I. Poland, and C. L. Ross, “The outer solar corona as observed from Skylab: Preliminary results,” Astrophys. J. 187 (1974).

  29. A. Marques de Souza, E. Echer, M. J. A. Bolzan, and R. Hajra, “Cross-correlation and cross-wavelet analyses of the solar wind IMF Bz and auroral electrojet index AE coupling during HILDCAAs,” Ann. Geophys. 36, 205–211 (2018).

    Article  ADS  Google Scholar 

  30. N. Østgaard, G. Germany, J. Stadsnes, and R. R. Vondrak, “Energy analysis of substorms based on remote sensing techniques, solar wind measurements, and geomagnetic indices,” J. Geophys. Res.: Space Phys. 107, SMP 9-1–SMP 9-14 (2002).

  31. Ramsingh, S. Sripathi, S. Sreekumar, S. Banola, K. Emperumal, P. Tiwari, and B. S. Kumar, “Low-latitude ionosphere response to super geomagnetic storm of 17/18 March 2015: Results from a chain of ground-based observations over Indian sector,” J. Geophys. Res.: Space Phys. 120, 10864–10882 (2015).

    Article  ADS  Google Scholar 

  32. S. Sapkota, S. K. Saurav, S. Gautam, M. Karki, B. Adhikari, R. K. Mishra, V. Klausner and B. M. Dhungana, “Analysis of Y-component of geomagnetic field and SYM-H index using wavelet multiresolution analysis,” Geomagn. Aeron. (Engl. Transl.) 62, 125–137 (2022).

  33. A. Shinbori, Y. Tsuji, T. Kikuchi, T. Araki, A. Ikeda, T. Uozumi, D. Baishev, B. M. Shevtsov, T. Nagatsuma, and K. Yumoto, “Magnetic local time and latitude dependence of amplitude of themain impulse (mi) of geomagnetic sudden commencements and its seasonal variation,” J. Geophys. Res.: Space Phys. 117, A08322 (2012).

    Article  ADS  Google Scholar 

  34. E. J. Smith, J. A. Slavin, R. D. Zwickl, and S. J. Bame, “Shocks and storm sudden commencements,” in Solar Wind — Magnetosphere Coupling, Ed. by Y. Kamide and J. A. Slavin (Reidel, Dordrecht, 1986), in Ser.: Astrophysics and Space Science Library, Vol. 126.

  35. B. T. Tsurutani, W. D. Gonzalez, F. Tang, S. I. Akasofu, and E. J. Smith, “Origin of interplanetary southward magnetic fields responsible for major magnetic storms near solar maximum (1978–1979),” J. Geophys. Res.: Space Phys. 93, 8519–8531 (1988).

    Article  ADS  Google Scholar 

  36. N. E.Turner, D. Baker, T. Pulkkinen, J. Roeder, J. Fennell, and V. Jordanova, “Energy content in the storm time ring current,” J. Geophys. Res.: Space Phys. 106, 19149–19156 (2001).

    Article  ADS  Google Scholar 

  37. O. Verkhoglyadova, B. Tsurutani, A. Mannucci, M. Mlynczak, L. Hunt, L. Paxton, and A. Komjathy, “Solar wind driving of ionosphere-thermosphere responses in three storms near St. Patrick’s Day in 2012, 2013, and 2015,” J. Geophys. Res.: Space Phys. 121, 8900–8923 (2016).

    Article  ADS  Google Scholar 

  38. D. Veselovsky, Y. Zhukov, C. Kuznetsov, B. Ishkov, Y. Eroshenko, K. Gaidash, Z. Kuzin, S. Ignat’ev, S. Sukhodrev, M. Eselevich, and V. Eselevich, “A year later: Solar, heliospheric, and magnetospheric disturbances in November 2004,” Geomagn. Aeron. (Engl. Transl.) 45, 681–719 (2005).

  39. J. A. Wanliss and K. M. Showalter, “High-resolution global storm index: Dst versus SYM-H,” J. Geophys. Res.: Space Phys. 111, A02202 (2006).

    Article  ADS  Google Scholar 

  40. D. J. Williams, “Dynamics of the Earth’s ring current: Theory and observation,” Space Sci. Rev. 42, 375–396 (1985).

    Article  ADS  Google Scholar 

  41. H. Zhao, X. Li, D. Baker, J. Fennell, J. Blake, B. A. Larsen, R. M. Skoug, H. O. Funsten, R. H. W. Friedel, G. D. Reeves, and H. E. Spence, “The evolution of ring current ion energy density and energy content during geomagnetic storms based on van Allen probes measurements,” J. Geophys. Res.: Space Phys. 120, 7493–7511 (2015).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank our data sources Intermagnet (https://intermagnet.org/) and OMNIweb (https://omniweb.gsfc.nasa.gov/).

Sarup Khadka Saurav thanks Krishna Prasad Paudel and Tek Bahadur Khadka for their assistance during the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarup Khadka Saurav.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gautam, S., Saurav, S.K., Adhikari, B. et al. Variation of the H Component of Geomagnetic Field: Relationship to the Ring and Field Aligned Currents. Kinemat. Phys. Celest. Bodies 39, 10–23 (2023). https://doi.org/10.3103/S0884591323010063

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0884591323010063

Keywords:

Navigation