Skip to main content
Log in

Energy Balance of Evanescent Acoustic-Gravity Waves

  • DYNAMICS AND PHYSICS OF BODIES OF THE SOLAR SYSTEM
  • Published:
Kinematics and Physics of Celestial Bodies Aims and scope Submit manuscript

Abstract—

The features of the energy balance of evanescent acoustic-gravity waves in the atmosphere are investigated. In the case of freely propagating AGWs in an ideal isothermal atmosphere without dissipation, the period-average densities of kinetic and potential energy are equal to each other. This is true for the acoustic and gravity regions of the AGW spectrum. It is shown that the period-average kinetic and potential AGW energy densities are not equal to each other in the general case in the evanescent spectral region. The exceptions are the Lamb wave and the Brunt–Väisälä oscillations, in which the particles oscillate only along one coordinate (horizontally or vertically). Also, the densities of kinetic and potential energy are equal for the evanescent f- and γ-modes at the points where they touch the regions of freely propagating waves. An assumption is made that the evanescent modes for which the average values of kinetic and potential energies are equal are implemented first.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. L. A. Dikii, Theory of Oscillations of the Earth’s Atmosphere (Gidrometeoizdat, Leningrad, 1969) [in Russian].

    Google Scholar 

  2. Yu. O. Klimenko, A. K. Fedorenko, Ye. I. Kryuchkov, O. K. Cheremnykh, A. D. Voitsekhovs’ka, Yu. O. Selivanov, and I. T. Zhuk, “Identification of acoustic–gravity waves according to the satellite measurement data,” Kinematics Phys. Celestial Bodies 37, 273–283 (2021).

    Article  ADS  Google Scholar 

  3. E. I. Kryuchkov and A. K. Fedorenko, “Peculiarities of energy transport in the atmosphere by acoustic gravity waves,” Geomagn. Aeron. (Engl. Transl.) 52, 235–241 (2012).

  4. A. K. Fedorenko, “Energy balance of acoustic gravity waves above the polar caps according to the data of satellite measurements,” Geomagn. Aeron. (Engl. Transl.) 50, 107–118 (2010).

  5. A. K. Fedorenko and I. V. Zakharov, “Specific oscillatory mode in the polar thermosphere,” Kosm. Nauka Tekhnol. 18 (2), 26–32 (2012). https://doi.org/10.15407/knit2012.02.026

    Article  Google Scholar 

  6. T. Beer, Atmospheric Waves (Wiley, New York, 1974).

    Google Scholar 

  7. O. K. Cheremnykh, A. K. Fedorenko, E. I. Kryuchkov, and Y. A. Selivanov, “Evanescent acoustic-gravity modes in the isothermal atmosphere: systematization, applications to the Earth’s and Solar atmospheres,” Ann. Geophys. 37, 405–415 (2019). https://doi.org/10.5194/angeo-37-405-2019

    Article  ADS  Google Scholar 

  8. E. E. Gossard and W. H. Hooke, Waves in the Atmosphere: Atmospheric Infrasound and Gravity Waves: Their Generation and Propagation (Elsevier, New York, 1975).

    Google Scholar 

  9. C. O. Hines, “Internal gravity waves at ionospheric heights,” Can. J. Phys. 38, 1441–1481 (1960).

    Article  ADS  Google Scholar 

  10. W. L. Jones, “Non-divergent oscillations in the Solar Atmosphere,” Sol. Phys. 7, 204–209 (1969).

    Article  ADS  Google Scholar 

  11. P. Kundu, Fluid Dynamics (Elsevier, New York, 1990).

    Google Scholar 

  12. H. Lamb, Hydrodynamics (Dover, New York, 1932).

  13. A. Roy, S. Roy, and A. P. Misra, “Dynamical properties of acoustic-gravity waves in the atmosphere,” J. Atmos. Sol.-Terr. Phys. 186, 78–81 (2019).

    Article  ADS  Google Scholar 

  14. L. Stenflo and P. K. Shukla, “Nonlinear acoustic gravity waves,” J. Plasma Phys. 75, 841–847 (2009). https://doi.org/10.1017/S0022377809007892

    Article  ADS  Google Scholar 

  15. I. Tolstoy, “The theory of waves in stratified fluids including the effects of gravity and rotation,” Rev. Mod. Phys. 35, 207 (1963).

    Article  ADS  MathSciNet  Google Scholar 

  16. S. L. Vadas and M. J. Fritts, “Thermospheric responses to gravity waves: Influences of increasing viscosity and thermal diffusivity,” J. Geophys. Res.: Atmos. 110, D15103 (2005). https://doi.org/10.1029/2004JD005574

    Article  ADS  Google Scholar 

  17. R. L. Waltercheid and J. H. Hecht, “A reexamination of evanescent acoustic-gravity waves: Special properties and aeronomical significance,” J. Geophys. Res.: Atmos. 108, 4340 (2003). https://doi.org/10.1029/2002JD002421

    Article  ADS  Google Scholar 

  18. K. S. Yeh and C. H. Liu, “Acoustic-gravity waves in the upper atmosphere,” Rev. Geophys. Space Phys. 12, 193–216 (1974).

    Article  ADS  Google Scholar 

  19. S. D. Zhang and F. Yi, “A numerical study of propagation characteristics of gravity wave packets propagating in a dissipative atmosphere,” J. Geophys. Res.: Atmos. 107, ACL 14-1–ACL 14-9 (2002).

Download references

Funding

This work was supported by the National Research Foundation of Ukraine, project no. 2020.02/0015 (Theoretical and Experimental Studies of Global Disturbances of Natural and Technogenic Origin in the Earth–Atmosphere–Ionosphere System) and in part by the Thematic Program of the Wolfgang Pauli Institute “Models in Plasma, Earth and Space Sciences (2021/2022).”

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. K. Fedorenko, O. K. Cheremnykh, E. I. Kryuchkov or D. I. Vlasov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Pismenov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedorenko, A.K., Cheremnykh, O.K., Kryuchkov, E.I. et al. Energy Balance of Evanescent Acoustic-Gravity Waves. Kinemat. Phys. Celest. Bodies 38, 190–196 (2022). https://doi.org/10.3103/S0884591322040031

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0884591322040031

Keywords:

Navigation