Skip to main content
Log in

Physical Effects of the Yushu Meteoroid: 1

  • DYNAMICS AND PHYSICS OF BODIES OF THE SOLAR SYSTEM
  • Published:
Kinematics and Physics of Celestial Bodies Aims and scope Submit manuscript

Abstract—

The purpose of this article was to evaluate the mechanical, optical, and gasdynamic effects that accompanied the passage and explosion of the Yushu meteoroid. The explosion occurred over a sparsely populated area, Qinghai Province (Tibetan Plateau, People’s Republic of China). According to NASA, the initial kinetic energy of the celestial body was approximately 9.5 kt TNT or 40 TJ. Approximately 4.9 TJ, i.e., 12.25% of the initial kinetic energy of the body, was converted into the energy of the light flash. The projections of the velocity of the meteoroid are as follows: vx = –2.6 km/s, vy = 5.9 km/s, and vz = –12.1 km/s. They are used to estimate the angle of inclination of the trajectory to the horizon, which is approximately 5°. Using the explosion height of 35.5 km and the inclination angle, the density of the matter is estimated to be close to that of an ordinary chondrite (approximately 3.5 t/m3). Knowledge of the kinetic energy and velocity allows us to calculate the mass of the meteoroid (432 t) and its characteristic size (6.2 m). The energy of the processes, as well as mechanical, optical, and gasdynamic effects of the celestial body, are analyzed. The main release of energy accompanying the deceleration of fragments of the body destroyed at a dynamic pressure of ~1 MPa took place in a 17.2 km long area at a height of approximately 35 km. A quasi-continuous fragmentation and a power law of the distribution of the mass of the fragments are assumed. The main parameters of ballistic and explosive shock waves are estimated. With a Mach number of 45, the radius of the ballistic shock wave was approximately 280 m, and the fundamental period was 2.6 s, which increased from 9.5 to 30.1 s due to dispersion as the distance traveled by the wave increased from 50 to 5000 km. The radius of the cylindrical and spherical explosion waves was approximately 0.8 and 2 km, respectively, and the fundamental period was 7.5 and 18.8 s. This period increased from 21.1 to 66.7 s as the distance increased from 50 to 5000 km. Near the meteoroid terminal point, the relative overpressure was maximal. It decreased with decreasing height, and increased with increasing height until approximately 120–150 km, where it reached ~10–20 percent and then decreased to a few percent. The absolute value of the overpressure for the spherical wave was maximal near the explosion height, then it decreased as the height decreased to 15 km, then increased again. At the epicenter of the explosion, it was approximately 310 Pa for a cylindrical wave or ~48.5 Pa for a spherical wave, which is insufficient to damage ground objects. With increasing height, the overpressure decreased from many tens of pascals to micropascals. The average power of a light flash with a duration of approximately 1.26 s was 3.9 TW, the power flux density near the fireball, more precisely, a 3.4 km long cone with a diameter of 18.6 m, was 19.5 MW/m2. The surface temperature was close to 4300 K and the Wien wavelength was 6.7 × 10–7 m.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Sol. Syst. Res. 47 (4) (2013). (Thematic issue). Special Issue.

  2. V. A. Bronshten, Physics of Meteoric Phenomena (Nauka, Moscow, 1981; Reidel, Dordrecht, 1983).

  3. N. V. Vasil’ev, The Tunguska Meteorite: A Space Phenomenon of the Summer of 1908 (Russ. Panorama, Moscow, 2004) [in Russian].

    Google Scholar 

  4. A. I. Voitsekhovskii and V. A. Romeiko, The Tunguska Meteorite. 100 Years of the Great Puzzle (Veche, Moscow, 2008) [in Russian].

    Google Scholar 

  5. E. E. Gossard and W. H. Hooke, Waves in the Atmosphere: Atmospheric Infrasound and Gravity Waves, Their Generation and Propagation (Elsevier, Amsterdam, 1975; Mir, Moscow, 1978).

  6. Dynamic Processes in Geospheres, Iss. 5: Geodesic Effects of the Fall of Chelyabinsk Meteoroid (GEOS, Moscow, 2014) in Ser.: Collection of Scientific Papers of the Institute of Geosphere Dynamics, Russian Academy of Sciences, Special Issue [in Russian].

  7. V. V. Emel’yanenko, O. P. Popova, N. N. Chugai, M. A. Shelyakov, Yu. V. Pakhomov, B. M. Shustov, V. V. Shuvalov, E. E. Biryukov, Yu. S. Rybnov, M. Ya. Marov, L. V. Rykhlova, S. A. Naroenkov, A. P. Kartashova, V. A. Kharlamov, and I. A. Trubetskaya, “Astronomical and physical aspects of the Chelyabinsk event (February 15, 2013),” Sol. Syst. Res. 47, 240–254 (2013). https://doi.org/10.1134/S0038094613040114

    Article  ADS  Google Scholar 

  8. O. V. Lazorenko and L. F. Chernogor, “System spectral analysis of infrasonic signal generated by Chelyabinsk meteoroid,” Radioelectron. Commun. Syst. 60, 331–338 (2017). https://doi.org/10.3103/S0735272717080015

    Article  Google Scholar 

  9. Chelyabinsk Meteorite — A Year on the Earth: Proc. All-Russian Sci. Conf., Chelyabinsk, Russia, Feb. 14–15, 2014, Ed. by N. A. Antipin, (Chelyab. Gos. Kraeved. Muz., Chelyabinsk, 2014).

    Google Scholar 

  10. Yu. B. Milovanov and L. F. Chernogor, “Dynamics of the Chelyabinsk meteoroid entering the atmosphere: Mass–energy balance,” Radiofiz. Radioastron. 23, 176–188 (2018). https://doi.org/10.15407/rpra23.03.176

    Article  Google Scholar 

  11. Chelyabinsk Superbolide, Ed. by N. N. Gor’kavyi, A. E. Dudorov, and S. Taskaev (Chelyab. Gos. Univ., Chelyabinsk, 2016; Springer-Verlag, Cham, 2019). https://doi.org/10.1007/978-3-030-22986-3

  12. L. F. Chernogor, Physics and Ecology of Catastrophes: Monograph (Khark. Nats. Univ. im. V. N. Karazina, Kharkiv, 2012) [in Russian].

  13. L. F. Chernogor, “Plasma, electromagnetic, and acoustic effects of the "Chelyabinsk” meteorite,” Inzh. Fiz. 8, 23–40 (2013).

    Google Scholar 

  14. L. F. Chernogor, “Physical effects of the Chelyabinsk meteorite passage,” Dopov. Nats. Akad. Nauk Ukr., No. 10, 97–104 (2013). http://dspace.nbuv.gov.ua/handle/123456789/86192.

  15. L. F. Chernogor, “Large-scale disturbances in the Earth’s magnetic field associated with the Chelyabinsk meteorite event,” Radiofiz. Elektron. 4(18) (3), 47–54 (2013).

  16. L. F. Chernogor, “Basic effects of Chelyabinsk meteoroid fall: The results of physical–mathematic simulation,” in Chelyabinsk Meteorite — A Year on the Earth: Proc. All-Russian Sci. Conf., Chelyabinsk, Russia, Feb. 14–15, 2014, Ed. by N. A. Antipin, et al., (Chelyab. Gos. Kraeved. Muz., Chelyabinsk, 2014), pp. 229–264.

  17. L. F. Chernogor, “Geomagnetic field effects of the Chelyabinsk meteoroid,” Geomagn. Aeron. (Engl. Transl.) 54, 613–624 (2014). https://doi.org/10.1134/S001679321405003X

  18. L. F. Chernogor, “Ionospheric effects of the Chelyabinsk meteoroid,” Geomagn. Aeron. (Engl. Transl.) 55, 353–368 (2015). https://doi.org/10.1134/S0016793215030044

  19. L. F. Chernogor, “Physical effects, that accompanied a passage and explosion of Chelyabinsk meteoroid,” Radiotekh. Vseukr. Mezhved. Nauchno-Tekh. Sborn. 184, 32–36 (2016).

    Google Scholar 

  20. L. F. Chernogor, “Atmospheric effects of the gas–dust plume of the Chelyabinsk meteoroid of 2013,” Izv., Atmos. Ocean. Phys. 53, 259–268 (2017). https://doi.org/10.1134/S0001433817030033

    Article  Google Scholar 

  21. L. F. Chernogor, “Chelyabinsk meteoroid acoustic effects,” Radiofiz. Radioastron. 22 (1), 53–66 (2017). https://doi.org/10.15407/rpra22.01.053

    Article  Google Scholar 

  22. L. F. Chernogor, “Disturbance in the lower ionosphere that accompanied the reentry of the Chelyabinsk cosmic body,” Cosmic Res. 55, 323–332 (2017). https://doi.org/10.1134/S0010952517050033

    Article  ADS  Google Scholar 

  23. L. F. Chernogor, “Magnetospheric effects during the approach of the Chelyabinsk meteoroid,” Geomagn. Aeron. (Engl. Transl.) 58, 252–265 (2018). https://doi.org/10.1134/S0016793218020044

  24. L. F. Chernogor, “The physical effects of Romanian meteoroid. 1,” Kosm. Nauka Tekhnol. 24 (1), 49–70 (2018). https://doi.org/10.15407/knit2018.01.049

    Article  Google Scholar 

  25. L. F. Chernogor, “The physical effects of Romanian meteoroid. 2,” Kosm. Nauka Tekhnol. 24 (2), 18–35 (2018). https://doi.org/10.15407/knit2018.02.018

    Article  Google Scholar 

  26. L. F. Chernogor, “Parameters of acoustic signals generated by the atmospheric meteoroid explosion over Romania on January 7, 2015,” Sol. Syst. Res. 52, 206–222 (2018). https://doi.org/10.1134/S0038094618030048

    Article  ADS  Google Scholar 

  27. L. F. Chernogor, “Physical effects of the Lipetsk meteoroid: 1,” Kinematics Phys. Celestial Bodies 35, 174–188 (2019). https://doi.org/10.3103/S0884591319040020

    Article  ADS  Google Scholar 

  28. L. F. Chernogor, “Ionospheric effects of the Lipetsk meteoroid,” Geomagn. Aeron. (Engl. Transl.) 60, 80–89 (2020). https://doi.org/10.1134/S0016793219060057

  29. L. F. Chernogor, “Effects of the Lipetsk meteoroid in the geomagnetic field,” Geomagn. Aeron. (Engl. Transl.) 60, 355–372 (2020).

  30. L. F. Chernogor, “Kamchatka meteoroid effects in the lithosphere–atmosphere–ionosphere–magnetosphere system,” in Problems of Geocosmos: Proc. 13th Int. Conf. and School, St. Petersburg, Russia, Mar. 24–27, 2021 (VVM, St. Petersburg, 2021), pp. 400–410.

  31. L. F. Chernogor and K. P. Garmash, “Disturbances in geospace associated with the Chelyabinsk meteorite passage,” Radiofiz. Radioastron. 18, 231–243 (2013). http://rpra-journal.org.ua/index.php/ra/article/view/1142.

  32. L. F. Chernogor and Yu. B. Milovanov, “Dynamics of the Chelyabinsk meteoroid fall: Altitude and time dependences,” Radiofiz. Radioastron. 23, 104–115 (2018). https://doi.org/10.15407/rpra23.02.104

    Article  Google Scholar 

  33. L. F. Chernogor and N. B. Shevelev, “Global statistics of bolides in the terrestrial atmosphere,” Radiofiz. Radioastron. 22, 138–145 (2017). https://doi.org/10.15407/rpra22.02.138

    Article  Google Scholar 

  34. L. F. Chernogor and N. B. Shevelev, “Infrasound wave generated by the Tunguska celestial body: Amplitude dependence on distance,” Radiofiz. Radioastron. 23, 94–103 (2018). https://doi.org/10.15407/rpra23.02.094

    Article  Google Scholar 

  35. L. F. Chernogor and N. B. Shevelev, “Characteristics of the infrasound signal generated by Chelyabinsk celestial body: Global statistics,” Radiofiz. Radioastron. 23, 24–35 (2018). https://doi.org/10.15407/rpra23.01.024

    Article  Google Scholar 

  36. S. J. Arrowsmith, D. P. Drob, M. A. H. Hedlin, and W. Edwards, “A joint seismic and acoustic study of the Washington State bolide: Observation and modeling,” J. Geophys. Res.: Atmos. 112, D09304 (2007). https://doi.org/10.1029/2006JD008001

    Article  ADS  Google Scholar 

  37. J. Boroviĉka and P. Kalenda, “The Morávka meteorite fall: 4. Meteoroid dynamics and fragmentation in the atmosphere,” Meteorit. Planet. Sci. 38, 1023–1043 (2003). https://doi.org/10.1111/j.1945-5100.2003.tb00296.x

    Article  ADS  Google Scholar 

  38. J. Boroviĉka, P. Spurný, P. Kalenda, and E. Tagliaferri, “The Morávka meteorite fall: 1. Description of the events and determination of the fireball trajectory and orbit from video records,” Meteorit. Planet. Sci. 38, 975–987 (2003). https://doi.org/10.1111/j.1945-5100.2003.tb00293.x

    Article  ADS  Google Scholar 

  39. J. Boroviĉka, H. W. Weber, T. Jopek, P. Jakeŝ, Z. Randa, P. G. Brown, D. O. ReVelle, P. Kalenda, L. Schultz, J. Kucera, J. Haloda, P. Týcová, J. Frýda, and F. Brandstätter, “The Morávka meteorite fall: 3. Meteoroid initial size, history, structure, and composition,” Meteorit. Planet. Sci. 38, 1005–1021 (2003). https://doi.org/10.1111/j.1945-5100.2003.tb00295.x

    Article  ADS  Google Scholar 

  40. P. G. Brown, A. R. Hildebrand, D. W. E. Green, D. Pagé, C. Jacobs, D. ReVelle, E. Tagliaferri, J. Wacker, and B. Wetmiller, “The fall of the St-Robert meteorite,” Meteorit. Planet. Sci. 31, 502–517 (1999). https://doi.org/10.1111/j.1945-5100.1996.tb02092.x

    Article  ADS  Google Scholar 

  41. P. G. Brown, D. O. ReVelle, E. Tagliaferri, and A. R. Hildebrand, “An entry model for the Tagish Lake fireball using seismic, satellite and infrasound records,” Meteorit. Planet. Sci. 37, 661–675 (2002). https://doi.org/10.1111/j.1945-5100.2002.tb00846.x

    Article  ADS  Google Scholar 

  42. P. G. Brown, R. W. Whitaker, D. O. ReVelle, and E. Tagliaferri, “Multi-station infrasonic observations of two large bolides: signal interpretation and implications for monitoring of atmospheric explosions,” Geophys. Res. Lett. 29, 14-1–14-4 (2002). https://doi.org/10.1029/2001GL013778

  43. P. G. Brown, P. Kalenda, D. O. ReVelle, and J. Boroviĉka, “The Morávka meteorite fall: 2. Interpretation of infrasonic and seismic data,” Meteorit. Planet. Sci. 38, 989–1003 (2003). https://doi.org/10.1111/j.1945-5100.2003.tb00294.x

    Article  ADS  Google Scholar 

  44. P. G. Brown, D. Pack, W. N. Edwards, D. O. ReVelle, B. B. Yoo, R. E. Spalding, and E. Tagliaferri, “The orbit, atmospheric dynamics, and initial mass of the Park Forest meteorite,” Meteorit. Planet. Sci. 39, 1781–1796 (2004). https://doi.org/10.1111/j.1945-5100.2004.tb00075.x

    Article  ADS  Google Scholar 

  45. A. Carbognani, “The great Chinese fireball of December 22, 2020,” Eur. Phys. J. Plus 136, 616 (2021). https://doi.org/10.1140/epjp/s13360-021-01504-x

    Article  Google Scholar 

  46. Catastrophic Events Caused by Cosmic Objects, Ed. by V. Adushkin and I. Nemchinov (Springer-Verlag, Dordrecht, 2008). https://doi.org/10.1007/978-1-4020-6452-4

    Book  Google Scholar 

  47. Center for Near Earth Object Studies. https://cneos.jpl.nasa.gov/.

  48. G. Cevolani, L. Foschini, and G. Trivellone, “The "Lugo” fireball of January 19, 1993,” Nuovo Cimento 16C, 463–471 (1993).

    Article  ADS  Google Scholar 

  49. G. Cevolani, M. Hajdukova, L. Foschini, and G. Trivellone, “The spectacular airburst over Lugo (Italy) on January 19, 1993,” Contrib. Astron. Obs. Skalnaté Pleso 24, 117–124 (1994).

    ADS  Google Scholar 

  50. W. Cheng, P. Teng, J. Lyu, and Yi. Dai, “Infrasound detection and altitude estimation associated with the December 22, 2020 Yushu fireball,” Geosci. Lett. 8, 26 (2021). https://doi.org/10.1186/s40562-021-00196-6

    Article  ADS  Google Scholar 

  51. L. F. Chernogor and V. T. Rozumenko, “The physical effects associated with Chelyabinsk meteorite’s passage,” Probl. At. Sci. Technol. 86, 136–139 (2013).

    Google Scholar 

  52. L. F. Chernogor, “Large-scale disturbances in the Earth’s magnetic field associated with the Chelyabinsk meteorite event,” Telecommun. Radio Eng. 73, 1105–1115 (2014).

    Article  Google Scholar 

  53. L. Foschini, “On the airburst of large meteoroids in the Earth’s atmosphere. The Lugo bolide: reanalysis of a case study,” Astron. Astrophys. 337, L5–L8 (1998). https://doi.org/10.5281/ZENODO.14059

    Article  ADS  Google Scholar 

  54. B. G. Gavrilov, V. A. Pilipenko, Y. V. Poklad, and I. A. Ryakhovsky, “Geomagnetic effect of the Bering Sea meteoroid,” Russ. J. Earth Sci. 20, ES6009 (2020). https://doi.org/10.2205/2020ES000748

    Article  Google Scholar 

  55. S. Glasstone and P. J. Dolan, Effects of Nuclear Weapons (Department of Defense, Department of Energy, Washington, DC, 1977).

    Book  Google Scholar 

  56. A. R. Hildebrand, P. G. Brown, J. F. Wacker, R. J. Wetmiller, D. Pagé, D. W. E. Green, C. F. Jacobs, D. O. ReVelle, E. Tagliaferri, and S. A. Kissin, “The St-Robert bolide of June 14, 1994,” J. R. Astron. Soc. Can. 91, 261–275 (1997).

    ADS  Google Scholar 

  57. Infrasound Monitoring for Atmospheric Studies, Ed. by A. Le Pichon, E. Blanc, and A. Hauchecorne (Springer-Verlag, Dordrecht, 2019).

    Google Scholar 

  58. A. Le Pichon, J. M. Guérin, and E. Blanc, “Trail in the atmosphere of the 29 December 2000 meteor as recorded in Tahiti: Characteristics and trajectory reconstitution,” J. Geophys. Res.: Atmos. 107, ACL 17-1–ACL 17-10 (2002). https://doi.org/10.1029/2001JD001283

  59. J. Llorka, J. M. Trigo-Rodríguez, J. L. Ortiz, J. A. Docobo, J. García-Guinea, A. J. Castro-Tirado, A. E. Rubin, O. Eugster, W. Edwards, M. Laubenstein, and I. Casanova, “The Villalbeto de la Peña meteorite fall: 1. Fireball energy, meteorite recovery, strewn field, and petrography,” Meteorit. Planet. Sci. 40, 795–804 (2005).

    Article  ADS  Google Scholar 

  60. Y. Luo, L. F. Chernogor, K. P. Garmash, Q. Guo, V. T. Rozumenko, S. N. Shulga, and Y. Zheng, “Ionospheric effects of the Kamchatka meteoroid: Results from multipath oblique sounding,” J. Atmos. Sol.-Terr. Phys. 207, 105336 (2020). https://doi.org/10.1016/j.jastp.2020.105336

    Article  Google Scholar 

  61. T. B. McCord, J. Morris, D. Persing, E. Tagliaferri, C. Jacobs, R. Spalding, L. Grady, and R. Schmidt, “Detection of a meteoroid entry into the Earth’s atmosphere on February 1, 1994,” J. Geophys. Res.: Planets 100, 3245–3249 (1995). https://doi.org/10.1029/94JE02802

    Article  ADS  Google Scholar 

  62. O. Popova, P. Jenniskens, V. Emelyanenko, A. Kartashova, E. Biryukov, S. Khaibrakhmanov, V. Shuvalov, Y. Rybnov, A. Dudorov, V. Grokhovsky, D. Badyukov, Qing-Zhu Yin, P. Gural, J. Albers, M. Granvik, L. Evers, J. Kuiper, V. Kharlamov, A. Solovyov, Y. Rusakov, S. Korotkiy, I. Serdyuk, A. Korochantsev, M. Larionov, D. Glazachev, A. Mayer, G. Gisler, S. Gladkovsky, J. Wimpenny, M. Sanborn, A. Yamakawa, K. Verosub, D. Rowland, S. Roeske, N. Botto, J. Friedrich, M. Zolensky, L. Le, D. Ross, K. Ziegler, T. Nakamura, I. Ahn, J. Lee, Qin Zhou, Xian-Hua Li, Qiu-Li Li, Y. Liu, GuoQiang Tang, T. Hiroi, D. Sears, I. Weinstein, A. Vokhmintsev, A. Ishchenko, P. Schmitt-Kopplin, N. Hertkorn, K. Nagao, M. Haba, M. Komatsu, and T. Mikouchi, “Supplementary material for Chelyabinsk airburst, damage assessment, meteorite, and characterization,” Science (2013). https://www.sciencemag.org/cgi/content/full/science.1242642/DC1.

  63. O. Popova, P. Jenniskens, V. Emelyanenko, A. Kartashova, E. Biryukov, S. Khaibrakhmanov, V. Shuvalov, Y. Rybnov, A. Dudorov, V. Grokhovsky, D. Badyukov, Qing-Zhu Yin, P. Gural, J. Albers, M. Granvik, L. Evers, J. Kuiper, V. Kharlamov, A. Solovyov, Y. Rusakov, S. Korotkiy, I. Serdyuk, A. Korochantsev, M. Larionov, D. Glazachev, A. Mayer, G. Gisler, S. Gladkovsky, J. Wimpenny, M. Sanborn, A. Yamakawa, K. Verosub, D. Rowland, S. Roeske, N. Botto, J. Friedrich, M. Zolensky, L. Le, D. Ross, K. Ziegler, T. Nakamura, I. Ahn, J. Lee, Qin Zhou, Xian-Hua Li, Q.-L. Li, Y. Liu, GuoQiang Tang, T. Hiroi, D. Sears, I. Weinstein, A. Vokhmintsev, A. Ishchenko, P. Schmitt-Kopplin, N. Hertkorn, K. Nagao, M. Haba, M. Komatsu, and T. Mikouchi, “Chelyabinsk airburst, damage assessment, meteorite, and characterization,” Science 342, 1069–1073 (2013).

    Article  ADS  Google Scholar 

  64. D. Pricopi, M. Dascalu, O. Badescu, D. Nedelcu, M. Popescu, A. Sonka, and M. Suran, “Orbit reconstruction for the meteoroid of the meteorite-producting fireball that exploded over Romania on January 7, 2015,” Proc. Rom. Acad., Ser. A 17, 133–136 (2016).

    Google Scholar 

Download references

Funding

This work was supported by the National Research Foundation of Ukraine, project no. 2020.02/0015 (Theoretical and Experimental Investigations of Global Storms of Natural and Man-Made Origin in the Earth–Atmosphere–Ionosphere System. This study was supported in part within the state budget research projects of by the Ministry of Education and Science of Ukraine (project nos. 0119U002538, 0121U109881, and 0121U109882).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. F. Chernogor.

Additional information

Translated by O. Pismenov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chernogor, L.F. Physical Effects of the Yushu Meteoroid: 1. Kinemat. Phys. Celest. Bodies 38, 132–147 (2022). https://doi.org/10.3103/S0884591322030035

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0884591322030035

Keywords:

Navigation