Skip to main content
Log in

On the Altitude Dependence of the Aerosol Volume Scattering Coefficient in Saturn’s Atmosphere. II. Latitudinal Belts of the Northern Hemisphere

  • DYNAMICS AND PHYSICS OF BODIES OF THE SOLAR SYSTEM
  • Published:
Kinematics and Physics of Celestial Bodies Aims and scope Submit manuscript

Abstract

The altitude dependences of the aerosol volume-scattering coefficient have been determined for five latitudinal belts of the Northern hemisphere of Saturn, and the probable vertical structure of the aerosol component in a range of the atmospheric pressure at 0.06−10.0 bar has been constructed. For this purpose, the results of the authors' earlier analysis of the spectrophotometric measurements of the giant planet performed in 2015 for the latitudinal belts at 17° N, 33° N, 49° N, 66° N, and 80° N in the methane absorption bands at 727 nm and 619 nm were used. It has been found that aerosol is a ubiquitous component of Saturn’s atmosphere at altitude levels of the considered range, while there are no signs of purely gas interlayers. We determined the largest values of the aerosol volume-scattering coefficient, approximately ≈2 × 10−6 cm−1, in the midlatitude belt at 49° N and the smallest ones, approximately ≈1 × 10−8 cm−1, in the near-pole belt at 80° N. In the considered altitude range of the atmosphere, we detected four regions of the aerosol thickening (clustering), within which the aerosol volume-scattering coefficient reaches its highest values. Particles of the thickest aerosol layer in the atmosphere of Saturn were found at altitudes with a pressure of ≈0.06 bar. With immersing deeper into the atmosphere, the aerosol volume-scattering coefficient grows to the maximal values. Here, in all of the considered latitudinal belts except that at 80° N, two aerosol clusters are formed at the highest altitudes; within these clusters, the aerosol volume-scattering coefficient reaches its maximum at altitudes with a pressure of ≈0.26 and ≈0.45 bar. These clusters are separated in height by a less dense aerosol interlayer. In deeper atmospheric layers, at pressure levels between ≈0.45−2.0 bar, the aerosol volume-scattering coefficient significantly decreases. In this region of the atmosphere, in all of the considered latitudinal belts except that at 80° N, the third in succession cluster of aerosol was found. There, the maxima of the aerosol volume-scattering coefficient are located near a pressure level of ~1.0 bar. In even deeper layers, where the atmospheric pressure is approximately ≈2.0−6.0 bar, there is a fourth in succession cluster of aerosol. It is substantially extended in height, and the maxima of the aerosol volume-scattering coefficient in its upper and lower parts are located near pressure levels of 2.7 and 4.4 bar, respectively. In the model calculations, we used the following parameters of aerosol particles: the size distribution is described by a modified gamma function; the effective radius and the variance of this distribution are 1.4 μm and 0.07, respectively; and the real part of the complex refractive index is 1.44. These model characteristics of aerosols are considered as being close to the averaged parameters of particles in the real atmosphere of Saturn at the considered altitudes in the latitudinal belt at 66° N and in a pressure range of approximately 0.06−1.5 bar in the latitudinal belt at 33° N. At the same time, the signs of a possible significant difference between the model and real parameters of aerosol particles were revealed at all considered altitude levels of the atmosphere in the belts at 17° N and 49° N.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. D. H. Atkinson, O. Mousis, T. R. Spilker, E. Venkatapathy, J. Poncy, A. Coustenis, and K. R. Reh, “Hera — An ESA M-class Saturn entry probe mission proposal,” in Proc. AGU Fall Meeting, San Francisco, Cal., Dec. 14–18, 2015 (American Geophysical Union, Washington, DC, 2015), paper id. P11B-2086.

  2. S. K. Atreya and P. N. Romani, “Photochemistry and clusters of Jupiter, Saturn, and Uranus,” in Recent Advances in Planetary Meteorology, Ed. by G. E. Hunt (Cambridge Univ. Press, Cambridge, 1985), pp. 17–68.

    Google Scholar 

  3. S. K. Atreya, M. H. Wonga, T. C. Owen, P. R. Mahaffy, H. B. Niemann, I. de Pater, P. Drossart, and T. Encrenaz, “A comparison of the atmospheres of Jupiter and Saturn: Deep atmospheric composition, cluster structure, vertical mixing, and origin,” Planet. Space Sci. 47, 1243–1262 (1999).

    Article  ADS  Google Scholar 

  4. O. I. Bugaenko and A. V. Morozhenko, “Physical characteristics of the upper layers of Saturn’s atmosphere,” Adv. Space Res. 1, 183–186 (1981).

    Article  ADS  Google Scholar 

  5. N. J. Chanover, G. L. Bjoraker, D. A. Glenar, T. Hewagama, and K. H. Baines, “Latitudinal variations of Saturn’s near-infrared spectrum,” in Proc. AGU Fall Meeting, San Francisco, Cal., Dec. 5–9, 2005 (American Geophysical Union, Washington, DC, 2005), paper id. P11C-0135.

  6. R. Courtin, D. Gautier, A. Marten, B. Bézard, and R. Hanel, “The composition of Saturn’s atmosphere at Northern temperate latitudes from Voyager IRIS spectra: NH3, PH3, C2H2, C2H6, CH3D, CH4, and the Saturnian D/H ratio,” Astrophys. J. 287, 899–916 (1984).

    Article  ADS  Google Scholar 

  7. J. M. Dlugach, A. V. Morozhenko, A. P. Vid’machenko, and E. G. Yanovitskij, “Investigations of the optical properties of Saturn’s atmosphere carried out at the Main Astronomical Observatory of the Ukrainian Academy of Sciences,” Icarus 54, 319–336 (1983).

    Article  ADS  Google Scholar 

  8. L. N. Fletcher, L. Sromovsky, V. Hue, J. I. Moses, S. Guerlet, R. A. West, and T. Koskien, “Saturn’s seasonal atmosphere at northern summer solstice” (2020). arXiv 2012.09288v1 [astro-ph.EP]

  9. L. N. Fletcher, S. Guerlet, G. S. Orton, R. G. Cosentino, T. Fouchet, P. G. J. Irwin, L. Li, F. M. Flasar, N. Gorius, and R. Morales-Juberías, “Disruption of Saturn’s quasi-periodic equatorial oscillation by the great northern storm,” Nature Astron. 1, 765–770 (2017).

    Article  ADS  Google Scholar 

  10. E. Karkoschka and M. Tomasko, “Saturn’s vertical and latitudinal cluster structure 1991–2004 from HST imaging in 30 filters,” Icarus 179, 195–221 (2005).

    Article  ADS  Google Scholar 

  11. E. Karkoschka, “Spectrophotometry of the Jovian planets and Titan at 300- to 1000-nm wavelength: The methane spectrum,” Icarus 111, 967–982 (1994).

    Article  Google Scholar 

  12. Yu. Kuznyetsova, O. Matsiaka, Ya. Shliakhetskaya, V. Krushevska, A. Vid’machenko, M. Andreev, and A. Sergeev, “Spectral researches of solar system giant planets using 2-m telescope at the Peak Terskol,” Contrib. Astron. Obs. Skalnate’ Pleso 43, 461–461 (2014).

    Google Scholar 

  13. G. F. Lindal, “The atmosphere of Neptune: An analysis of radio occultation data with Voyager 2,” Astron. J. 103, 967–982 (1992).

    Article  ADS  Google Scholar 

  14. I. Mendikoa, A. Sánchez-Lavega, S. Pérez-Hoyos, R. Hueso, J. F. Rojas, and J. López-Santiago, “Temporal and spatial variations of the absolute reflectivity of Jupiter and Saturn from 0.38 to 1.7 μm with PlanetCam-UPV/EHU,” Astron. Astrophys. 607, A72 (2017).

    Article  ADS  Google Scholar 

  15. I. Mendikoa, S. Pérez-Hoyos, and A. Sánchez-Lavega, “Probing clusters in planets with a simple Radiative Transfer model: The Jupiter case,” Eur. J. Phys. 33, 1611–1624 (2012).

    Article  Google Scholar 

  16. A. V. Morozhenko, “Jovian cloud stratification,” Sov. Astron. Lett. 10, 323–325 (1984).

    ADS  Google Scholar 

  17. A. S. Ovsak, “On determining the vertical structure of the aerosol component in the atmosphere of Saturn,” Kinematics Phys. Celestial Bodies 34, 37–51 (2018).

    Article  ADS  Google Scholar 

  18. A. S. Ovsak, “The altitudinal dependence of aerosol volume scattering coefficient in the atmosphere of Saturn in 1993,” in Proc. 49th Lunar and Planetary Science Conf., Woodlands, Tex., Mar. 19–23, 2018 (Lunar and Planetary Inst., 2018), paper no. 1069.

  19. A. S. Ovsak, A. M. Karimov, and P. G. Lysenko, “Aerosol component of the atmosphere of Saturn: Comparison of the vertical structure characteristics in latitudinal belts,” Kinematics Phys. Celestial Bodies 34, 88–97 (2018).

    Article  ADS  Google Scholar 

  20. O. Ovsak and N. Kostogryz, “The method of computer analysis a vertical structure of aerosol component in the atmospheres of the Giant planets,” in Proc. AGU Chapman Conf.: Crossing Boundaries in Planetary Atmospheres — From Earth to Exoplanets, Annapolis, Md., June 24–27, 2013 (American Geophysical Union, 2013), paper no. 1677256.

  21. S. Pérez-Hoyos, J. F. Sanz-Requena, A. Sánchez-Lavega, P. G. J. Irwin, and A. Smith, “Saturn’s tropospheric particles phase function and spatial distribution from Cassini ISS 2010–11 observations,” Icarus 277, 1–18 (2016).

    Article  ADS  Google Scholar 

  22. S. Pérez-Hoyos, A. Sánchez-Lavega, and R. G. French, “Short-term changes in the belt/zone structure of Saturn’s southern hemisphere (1996–2004),” Astron. Astrophys. 460, 641–645 (2006).

    Article  ADS  Google Scholar 

  23. T. Roman Michael, D. Banfield, and P. J. Gierasch, “Saturn’s cluster structure inferred from Cassini ISS,” Icarus 225, 93–110 (2013).

    Article  ADS  Google Scholar 

  24. A. Sánchez-Lavega, R. Hueso, and S. Pérez-Hoyos, “The three-dimensional structure of Saturn’s equatorial jet at cluster level,” Icarus 187, 510–519 (2007).

    Article  ADS  Google Scholar 

  25. R. Santer and A. Dollfus, “Optical reflectance polarimetry of Saturn’s globe and rings: IV. Aerosols in the upper atmosphere of Saturn,” Icarus 48, 496–518 (1981).

    Article  ADS  Google Scholar 

  26. J. F. Sanz-Requena, S. Pérez-Hoyos, A. Sánchez-Lavega, A. Antuñano, and P. G. J. Irwin, “Haze and cluster structure of Saturn’s North Pole and Hexagon Wave from Cassini/ISS imaging,” Icarus 305, 284–300 (2018).

    Article  ADS  Google Scholar 

  27. L. A. Sromovsky, K. H. Baines, and P. M. Fry, “Modeling the evolution of north polar color and cluster structure on Saturn,” in Proc. 52nd AAS Division of Planetary Science Meeting, Oct. 26–30, 2020; Bull. Am. Astron. Soc. 52 (6), 204.03 (2020).

  28. V. G. Tejfel, L. A. Usoltzeva, and G. A. Kharitonova, “The spectral characteristics and probable structure of the cluster layer of Saturn,” in Planetary Atmospheres: Proc. 40th IAU Symp., Marfa, Tex., Oct. 26–31, 1969, Ed. by C. Sagan, T. C. Owen, and H. J. Smith (Reidel, Dordrecht, 1969), p. 375.

  29. T. Temma, N. J. Chanover, A. A. Simon-Miller, D. A. Glenar, J. J. Hillman, and D. M. Kuehn, “Vertical structure modeling of Saturn’s equatorial region using high spectral resolution imaging,” Icarus 175, 464–489 (2005).

    Article  ADS  Google Scholar 

  30. A. P. Vidmachenko, “Seasons on Saturn. 1. Changes in reflecting characteristics of the atmosphere at 1964–2012,” Visn. Astron. Shk. 11, 1–14 (2015).

    Google Scholar 

  31. A. P. Vidmachenko, “Seasons on Saturn. II. Influence of solar activity on variation of methane absorption,” Visn. Astron. Shk. 11, 15–23 (2015).

    Google Scholar 

  32. A. P. Vid’machenko, “Seasonal changes of methane absorption in the Saturn atmosphere,” in Proc. 46th Lunar and Planetary Science Conf., Woodlands, Tex., Mar. 16–20, 2015 (Lunar and Planetary Inst., 2015), paper no. 1051.

  33. A. P. Vidmachenko, Zh. M. Dlugach, and A. V. Morozhenko, “Nature of the optical nonuniformity in Saturn’s disk,” Sol. Syst. Res. 17, 164–171 (1984).

    ADS  Google Scholar 

  34. M. B. Vincent, J. T. Clarke, and J. T. Trauger, “The correlation of zonal bands and zonal winds in HST/STIS images of Jupiter and Saturn,” in Proc. American Astronomical Society 32th DPS Meeting, Pasadena, Cal., Oct. 23–27, 2000; Bull. Am. Astron. Soc. 32, 1008 (2000).

    ADS  Google Scholar 

  35. E. G. Yanovitskij and A. S. Ovsak, “Effective optical depth of absorption line formation in semi-infinite planetary atmospheres,” Kinematics Phys. Celestial Bodies 13, 1–19 (1997).

    ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to O.V. Morozhenko for helpful consultations and recommendations on the data processing and the analysis technique.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. S. Ovsak.

Additional information

Translated by E. Petrova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ovsak, O.S., Karimov, A.M. & Lysenko, P.G. On the Altitude Dependence of the Aerosol Volume Scattering Coefficient in Saturn’s Atmosphere. II. Latitudinal Belts of the Northern Hemisphere. Kinemat. Phys. Celest. Bodies 37, 172–182 (2021). https://doi.org/10.3103/S0884591321040061

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0884591321040061

Keywords:

Navigation