Skip to main content
Log in

Features of Convection in the Atmospheric Layers of the Solar Facula

  • SOLAR PHYSICS
  • Published:
Kinematics and Physics of Celestial Bodies Aims and scope Submit manuscript

Abstract

According to the data of complex 2D observations on the VTT telescope of the solar facula, a 3D model of the solar atmosphere in the facular region was obtained by solving the inverse radiative transfer problem in the Ba II 4554 A line. The magnetic field was estimated using the Stokes V profiles of the Fe I 15648 A line. The influence of magnetic field on photospheric convection was investigated: spatial variations in temperature and velocities at different heights were considered. It is shown that the mutual transformation of the mechanical and thermal energy of the solar plasma into magnetic energy occurs in the layers of the middle photosphere. The integral effect of a small-scale magnetic dynamo leads to lowering the temperature and slowing down the motion of the predominant downward flows in the layers of the middle photosphere in the facular regions with a strong field (greater than 1 kG), while there is an increase in temperature and acceleration of the motion of the predominant upward flows in the layers of the middle photosphere in the facular regions with a weak field (less than 1 kG). It is shown that the magnetic field of the facula stabilizes photospheric convection, and the small-scale magnetic dynamo causes a double temperature inversion in the photospheric layers of the facula.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. O. A. Baran and M. I. Stodilka, “Convection structure in the solar photosphere at granulation and mesogranulation scales,” Kinematics Phys. Celestial Bodies 31, 65–72 (2015).

    Article  ADS  Google Scholar 

  2. R. I. Kostyk, “Magnetic field effect on the fine structure of convective motions in the solar atmosphere,” Kinematics Phys. Celestial Bodies 28, 155–161 (2012).

    Article  ADS  Google Scholar 

  3. R. I. Kostyk, “What are solar faculae?” Kinematics Phys. Celestial Bodies 29, 32–36 (2013).

    Article  ADS  Google Scholar 

  4. V. L. Ol’shevskii, N. G. Shchukina, and I. E. Vasil’eva, “NLTR-formation of the Ba II 455.4 nm resonance line in the solar atmosphere,” Kinematics Phys. Celestial Bodies 24, 145–158.

  5. M. N. Pasechnik, “Spectral study of Ellerman bombs. Photosphere,” Kinematics Phys. Celestial Bodies 34, 68–81 (2018).

    Article  ADS  Google Scholar 

  6. A. I. Prysiazhnyi, M. I. Stodilka, and N. G. Shchukina, “Robust method for determination of magnetic field strength in the solar photosphere,” Kinematics Phys. Celestial Bodies 34, 277–289 (2018).

    Article  ADS  Google Scholar 

  7. M. I. Stodilka and A. I. Prysiazhnyi, “Diagnostics of the solar atmosphere by the Non-LTE inversion method: Line of Ba II 455.403 nm,” Kinematics Phys. Celestial Bodies 32, 23–29 (2016).

    Article  ADS  Google Scholar 

  8. M. I. Stodilka, “The Tychonoff stabilizers in inverse problems of spectral studies,” Kinematics Phys. Celestial Bodies 19, 229–235 (2003).

    Google Scholar 

  9. J. M. Borrero, S. Jafarzadeh, M. Schussler, and S. K. Solanki, “Solar magnetoconvection and small-scale dynamo. Recent developments in observation and simulation,” Space Sci. Rev. 210, 275–316 (2017).

    Article  ADS  Google Scholar 

  10. D. Buehler, A. Lagg, S. K. Solanki, and M. van Noort, “Properties of solar plage from a spatially coupled inversion of Hinode SP data,” Astron. Astrophys. 576, A27 (2015).

    Article  ADS  Google Scholar 

  11. G. A. Chapman and N. R. Sheeley, Jr., “The Photospheric Network,” Sol. Phys 5, 442–461 (1968).

    Article  ADS  Google Scholar 

  12. A. Cristaldi and I. Ermolli, ID atmosphere models from inversion of Fe I 630nm observation with an application to solar irradiance studies,” Astrophys. J. 841, 115 (2017).

    Article  ADS  Google Scholar 

  13. H. Hotta, M. Rempel, and T. Yokoyama, “Efficient small-scale dynamo in the solar convection zone,” Astrophys. J. 803, 42 (2015).

    Article  ADS  Google Scholar 

  14. C. U. Keller, M. Schiissler, A. Vogler, and V. Zakharov, “On the origin of solar faculae,” Astrophys. J. Lett. 607, L59–L62 (2004).

    Article  ADS  Google Scholar 

  15. R. Kostik and E. V. Khomenko, “Properties of convective motions in facular regions,” Astron. Astrophys. 545, A22 (2012).

    Article  ADS  Google Scholar 

  16. R. Kostik and E. Khomenko, “Properties of oscillatory motions in a facular region,” Astron. Astrophys. 559, A107 (2013).

    Article  ADS  Google Scholar 

  17. C. M. Norris, B. Beeck, Y. C. Unruh, et al., “Spectral variability of photospheric radiation due to faculae. I. The Sun and Sun-like stars,” Astron. Astrophys. 605, A45 (2017).

    Article  ADS  Google Scholar 

  18. O. V. Okunev and F. Kneer, “Numerical modeling of solar faculae close to the limb,” Astron. Astrophys. 439, 323–334 (2005).

    Article  ADS  Google Scholar 

  19. K. Petrovay and G. Szakaly, “The origin of intranetwork fields: A small-scale solar dynamo,” Astron. Astrophys. 274, 543–554 (1993).

    ADS  Google Scholar 

  20. R. J. Rutten, “Extreme limb observations of Ba II 4554 and Mg 1 4571,” Sol. Phys. 51, 3–24 (1977).

    Article  ADS  Google Scholar 

  21. R. J. Rutten, “Empirical NLTE Analyses of Solar Spectral Lines. II — The formation of the Ba II 4554 resonance line,” Sol. Phys. 56, 237–262 (1978).

    Article  ADS  Google Scholar 

  22. R. J. Rutten and R. W. Milkey, “Partial redistribution in the solar photospheric Ba II spectrum,” Astrophys. J. 231, 277–283 (1979).

    Article  ADS  Google Scholar 

  23. N. G. Shchukina, V. L. Olshevsky, and E. V. Khomenko, “The solar Ba II 4554 Å line as a Doppler diagnostic: NLTE analysis in 3D hydrodynamical model,” Astron. Astrophys. 506, 1393–1404 (2009).

    Article  ADS  Google Scholar 

  24. H. Socas-Navarro, “Semiempirical models of solar magnetic structures,” Astrophys. J. Suppl. Ser. 169, 439–457 (2007).

    Article  ADS  Google Scholar 

  25. O. Steiner, “Radiative properties of magnetic elements. II. Center to limb variation of the appearance of photospheric faculae,” Astron. Astrophys. 430, 691–700 (2005).

    Article  ADS  Google Scholar 

  26. J. E. Vernazza, E. H. Avrett, and R. Loeser, “Structure of the solar chromosphere. III. Models of the EUV brightness components of the quiet Sun,” Astrophys. J. Suppl. Ser. 45, 635–725 (1981).

    Article  ADS  Google Scholar 

Download references

Funding

This work was partly supported by the Ministry of Education and Science of Ukraine at the Ivan Franko National University of Lviv as part of research work on the project AO-91F.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. I. Stodilka, A. I. Prysiazhnyi or R. I. Kostyk.

Additional information

Translated by S. Avodkova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stodilka, M.I., Prysiazhnyi, A.I. & Kostyk, R.I. Features of Convection in the Atmospheric Layers of the Solar Facula. Kinemat. Phys. Celest. Bodies 35, 261–270 (2019). https://doi.org/10.3103/S0884591319060059

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0884591319060059

Keywords:

Navigation