Skip to main content
Log in

Diagnostics of the Quiet Sun Atmosphere’s Photospheric Jets

  • SOLAR PHYSICS
  • Published:
Kinematics and Physics of Celestial Bodies Aims and scope Submit manuscript

Abstract—From 2D-spectral observation data of a quiet region of the solar disk center in the Fe I λ 557.609 nm line, 3D hydrodynamic models of photospheric jets are built by solving the inverse radiative transfer problem. The obtained models describe thermodynamic parameters and the complete velocity field (vertical and horizontal). It is shown that the photospheric jets under consideration arise from the interaction of the surrounding environment with the field of the magnetic tube. The jets are located in a region of a unipolar magnetized downflow at the impact point of two horizontal flows, and they tend to occur at the edge of magnetic tubes. The observed gas velocities are subsonic in downflows of the jets. Energy release in the photospheric jets is predominantly localized in the middle photosphere layers, where the excess pressure is maximal. Compared with the surrounding media, mass density in the jets is significantly increased in the upper layers and slightly decreased in the lower layers of the photosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

Notes

  1. Courtesy of N.G. Shchukina.

REFERENCES

  1. O. A. Baran and M. I. Stodilka, “Convection structure in the solar photosphere at granulation and mesogranulation scales,” Kinematics Phys. Celestial Bodies. 31, 65–72 (2015).

    Article  ADS  Google Scholar 

  2. L. A. Vainshtein, I. I. Sobelman, and E. A. Yukov, Excitation of Atoms and Broadening of Spectral Lines (Nauka, Moscow, 1979; Springer-Verlag, Berlin, 1981).

  3. E. A. Gurtovenko and R. I. Kostyk, Fraunhofer Spectrum and a System of Solar Oscillator Strengths (Naukova Dumka, Kiev, 1989) [in Russian].

    Google Scholar 

  4. N. N. Kondrashova, “Spectropolarimetric investigation of an Ellerman bomb: 1. Observations,” Kinematics Phys. Celestial Bodies 32, 13–22 (2016).

    Article  ADS  Google Scholar 

  5. N. N. Kondrashova, “Spectropolarimetric investigation of an Ellerman bomb: 2. Photospheric models,” Kinematics Phys. Celestial Bodies 32, 70–77 (2016).

    Article  ADS  Google Scholar 

  6. K. R. Lang, Astrophysical Formulae (Springer-Verlag, Berlin, 1974; Mir, Moscow, 1978), Vol. 1.

  7. M. N. Pasechnik, “Spectral study of a pair of Ellerman bombs,” Kinematics Phys. Celestial Bodies 32, 55–69 (2016).

    Article  ADS  Google Scholar 

  8. M. N. Pasechnik, “Spectral study of Ellerman bombs. Photosphere,” Kinematics Phys. Celestial Bodies. 34, 68–81 (2018).

    Article  ADS  Google Scholar 

  9. A. A. Samarskii, The Theory of Difference Schemes (Nauka, Moscow, 1971; Marcel Dekker, New York, 2001).

  10. A. B. Severnyj, “Fine structure of the emission of active solar formations,” Astron. Zh. 33 (1), 72–79 (1956).

    Google Scholar 

  11. M. I. Stodilka, “Diagnostics of horizontal velocity field in the solar atmosphere: Line Ba II λ 455.403 nm,” Kinematics Phys. Celestial Bodies. 32, 145–152 (2016).

    Article  ADS  Google Scholar 

  12. M. I. Stodilka, “An inverse problem for the study of inhomogeneities in the atmosphere of the Sun and stars,” Zh. Fiz. Dosl. 6, 435–442 (2002).

    Google Scholar 

  13. M. I. Stodilka, “The Tychonoff stabilizers in inverse problems of spectral studies,” Kinematics Phys. Celestial Bodies 19, 229–235 (2003).

    Google Scholar 

  14. V. Abramenko, V. Yurchyshyn, P. Goode, and A. Kilcik, “Statistical distribution of size and lifetime of bright points observed with the New Solar Telescope,” Astrophys. J. Lett. 725, L101–L105 (2010).

    Article  ADS  Google Scholar 

  15. S. D. Anstee and B. J. O’Mara, “Width cross-sections for collisional broadening of s–p and p–s transitions by atomic hydrogen,” Mon. Not. R. Astron. Soc. 276, 859–866 (1995).

    Article  ADS  Google Scholar 

  16. V. Archontis and A. W. Hood, “Formation of Ellerman bombs due to 3D flux emergence,” Astron. Astrophys. 508, 1469–1483 (2009).

    Article  ADS  Google Scholar 

  17. V. Archontis and A. W. Hood, “A numerical model of standard to blowout jets,” Astrophys. J. Lett. 769, L21 (2013).

    Article  ADS  Google Scholar 

  18. M. Asplund, H. G. Ludwig, À. Nordlund, and R. F. Stein, “The effects of numerical resolution on hydrodynamical surface convection simulations and spectral line formation,” Astron. Astrophys. 359, 669–681 (2000).

    ADS  Google Scholar 

  19. J. L. Ballester, I. Alexeev, M. Collados, et al., “Partially ionized plasmas in astrophysics,” Space Sci. Rev. 214, 58 (2018).

    Article  ADS  Google Scholar 

  20. B. Beeck, M. Schüssler, R. H. Cameron, and A. Reiners, “Three-dimensional simulations of near-surface convection in main-sequence stars. III. The structure of small-scale magnetic flux concentrations,” Astron. Astrophys. 581, A42 (2015).

    Article  ADS  Google Scholar 

  21. N. Bello González, S. Danilović, and F. Kneer, “On the structure and dynamics of Ellerman bombs. Detailed study of three events and modelling of Hα,” Astron. Astrophys. 557, A102 (2013).

    Article  ADS  Google Scholar 

  22. L. R. Bellot Rubio, I. Rodríguez Hidalgo, M. Collados, et al., “Observation of convective collapse and upward-moving shocks in the quiet Sun,” Astrophys. J. 560, 1010–1019 (2001).

    Article  ADS  Google Scholar 

  23. T. E. Berger and A. M. Title, “On the dynamics of small-scale solar magnetic elements,” Astrophys. J. 463, 365–371 (1996).

    Article  ADS  Google Scholar 

  24. A. Berlicki and P. Heinzel, “Observations and NLTE modeling of Ellerman bombs,” Astron. Astrophys. 567, A110 (2014).

    Article  ADS  Google Scholar 

  25. J. M. Borrero, V. MartRnez Pillet, W. Schmidt, et al., “Is magnetic reconnection the cause of supersonic upflows in granular cells?,” Astrophys. J. 768, 69 (2013).

    Article  ADS  Google Scholar 

  26. B. Bovelet and E. Wiehr, “Dynamics of the solar active region fine structure,” Astron. Astrophys. 412, 249–255 (2003).

    Article  ADS  Google Scholar 

  27. D. L. Chesny, H. M. Oluseyi, N. B. Orange, and P. Champey, “Quiet-Sun network bright point phenomena with sigmoidal signatures,” Astrophys. J. 814, 124 (2015).

    Article  ADS  Google Scholar 

  28. M. C. M. Cheung, M. Schüssler, T. D. Tarbell, and A. M. Title, “Solar surface emerging flux regions: A comparative study of radiative MHD modeling and Hinode SOT observations,” Astrophys. J. 687, 1373–1387 (2008).

    Article  ADS  Google Scholar 

  29. W. Curdt, B. N. Dwivedi, and D. E. Innes, “EUV observations of bi-directional jets in the solar corona,” in Proc. 5th SOHO Workshop: The Corona and Solar Wind Near Minimum Activity, Oslo, Norway, June 17–20, 1997, Ed. by A. Wilson (ESA, Noordwijk, 1997), p. 303.

  30. S. Danilovic, B. Beeck, A. Pietarila, et al., “Transverse component of the magnetic field in the solar photosphere observed by SUNRISE,” Astrophys. J. Lett. 723, L149–L153 (2010).

    Article  ADS  Google Scholar 

  31. S. Danilovic, R. H. Cameron, and S. K. Solanki, “Simulated magnetic flows in the solar photosphere,” Astron. Astrophys. 574, A28 (2015).

    Article  ADS  Google Scholar 

  32. J. de la Cruz Rodríguez, M. S. G. Löfdahl, P. Sütterlin, T. Hillberg, and L. Rouppe van der Voort, “CRISPRED: A data pipeline for the CRISP imaging spectropolarimeter,” Astron. Astrophys. 573, A40 (2015).

    Article  ADS  Google Scholar 

  33. T. del Pino Alemán, J. Trujillo Bueno, J. Štěpán, and N. Shchukina, “A novel investigation of the small-scale magnetic activity of the quiet Sun via the Hanle effect in the Sr I 4607 Å line,” Astrophys. J. 863, 164 (2018).

    Article  ADS  Google Scholar 

  34. J. Y. Ding, M. S. Madjarska, J. G. Doyle, et al., “Magnetic reconnection resulting from flux emergence: Implications for jet formation in the lower solar atmosphere?,” Astron. Astrophys. 535, A95 (2011).

    Article  Google Scholar 

  35. F. Ellerman, “Solar hydrogen "bombs”,” Astrophys. J. 46, 298–301 (1917).

    Article  ADS  Google Scholar 

  36. T. Felipe, E. Khomenko, and M. Collados, “Magneto-acoustic waves in sunspots: First results from a new three-dimensional nonlinear magnetohydrodynamic code,” Astrophys. J. 719, 357–377 (2010).

    Article  ADS  Google Scholar 

  37. C. E. Fischer, N. Bello González, and R. Rezaei, “Quiet Sun magnetic field evolution observed with Hinode SOT and IRIS,” in Proc. Coimbra Solar Physics Meeting: Ground-Based Solar Observations in the Space Instrumentation Era, Coimbra, Portugal, Oct. 5–9, 2015, Ed. by I. Dorotovic, C. E. Fischer, and M. Temmer (ASP, San Francisco, CA, 2016), in Ser.: ASP Conference Series, Vol. 504, p. 19.

  38. T. Gehren, K. Butler, L. Mashonkina, et al., “Kinetic equilibrium of iron in the atmospheres of cool dwarf stars. I. The solar strong line spectrum,” Astron. Astrophys. 366, 981–1002 (2001).

    Article  ADS  Google Scholar 

  39. M. K. Georgoulis, D. M. Rust, P. N. Bernasconi, et al., “Statistics, morphology, and energetic of Ellerman bombs,” Astrophys. J. 575, 506–528 (2002).

    Article  ADS  Google Scholar 

  40. C. Gontikakis, V. Archontis, and K. Tsinganos, “Observations and 3D MHD simulations of a solar active region jet,” Astron. Astrophys. 506, L45–L48 (2009).

    Article  ADS  Google Scholar 

  41. U. Grossmann-Doerth, M. Schüssler, and O. Steiner, “Convective intensification of solar surface magnetic fields: Results of numerical experiments,” Astron. Astrophys. 337, 928–939 (1998).

    ADS  Google Scholar 

  42. Yu. Hashimoto, R. Kitai, K. Ichimoto, et al., “Internal fine structure of Ellerman bombs,” Publ. Astron. Soc. Jpn. 62, 879–891 (2010).

    Article  ADS  Google Scholar 

  43. Hong Jie, M. D. Ding, Li Ying, et al., “Spectral observations of Ellerman bombs and fitting with a two-cloud model,” Astrophys. J. 792, 13 (2014).

    Article  ADS  Google Scholar 

  44. S. Jafarzadeh, L. Rouppe van der Voort, and J. de la Cruz Rodriguez, “Magnetic upflow events in the quiet-Sun photosphere. I. Observations,” Astrophys. J. 810, 54 (2015).

    Article  ADS  Google Scholar 

  45. P. H. Keys, M. Mathioudakis, D. B. Jess, et al., “The velocity distribution of solar photospheric magnetic bright points,” Astrophys. J. Lett. 740, L40 (2011).

    Article  ADS  Google Scholar 

  46. E. Khomenko, “Diagnostics of quiet-Sun magnetism,” in Proc. Conf. Solar MHD Theory and Observations: A High Spatial Resolution Perspective, Sacramento Peak, July 18–22, 2005, Ed. by J. Leibacher, R. F. Stein, and H. Uitenbroek (ASP, 2006), in Ser.: ASP Conference Series, Vol. 354, p. 63.

  47. E. Khomenko, M. Collados, and T. Felipe, “Nonlinear numerical simulations of magneto-acoustic wave propagation in small-scale flux tubes,” Sol. Phys. 251, 589–611 (2008).

    Article  ADS  Google Scholar 

  48. E. Khomenko, N. Vitas, M. Collados, and A. de Vicente, “Numerical simulations of quiet Sun magnetic fields seeded by the Biermann battery,” Astron. Astrophys. 604, A66 (2017).

    Article  ADS  Google Scholar 

  49. E. Khomenko, N. Vitas, M. Collados, and A. de Vicente, “Three-dimensional simulations of solar magneto-convection including effects of partial ionization,” Astron. Astrophys. 618, A87 (2018).

    Article  ADS  Google Scholar 

  50. I. N. Kitiashvili, “Radiative 3D MHD simulations of the spontaneous small-scale eruptions in the solar atmosphere,” in Proc. 29th IAU General Assembly, Honolulu, 2015 (Cambridge Univ. Press, Cambridge, 2015), id. 2258477.

  51. I. Kitiashvili and S. Yoon, “Realistic modeling of spontaneous flow eruptions in the quiet Sun,” in Proc. 224th Meeting of the American Astronomical Society, Boston, MA, June 1–5, 2014, id. 323.02.

  52. R. I. Kostik, N. G. Shchukina, and R. J. Rutten, “The solar iron abundance: Not the last word,” Astron. Astrophys. 305, 325–342 (1996).

    ADS  Google Scholar 

  53. R. I. Kostyk, N. G. Shchukina, and E. V. Khomenko, “Fine structure of wave motions in the solar photosphere: Observations and theory,” Astron. Rep. 50, 588–600 (2006).

    Article  ADS  Google Scholar 

  54. B. W. Lites, M. Kubo, H. Socas-Navarro, et al., “The horizontal magnetic flux of the quiet-Sun internetwork as observed with the Hinode spectro-polarimeter,” Astrophys. J. 672, 1237–1253 (2008).

    Article  ADS  Google Scholar 

  55. V. Martínez Pillet, J. C. Del Toro Iniesta, and C. Quintero Noda, “Ubiquitous quiet-Sun jets,” Astron. Astrophys. 530, A111 (2011).

    Article  ADS  Google Scholar 

  56. J. P. Mehltretter, “Observations of photospheric faculae at the center of the solar disk.,” Sol. Phys. 38, 43–57 (1974).

    Article  ADS  Google Scholar 

  57. S. Nagata, S. Tsuneta, Y. Suematsu, et al., “Formation of solar magnetic flux tubes with kilogauss field strength induced by convective instability,” Astrophys. J. Lett. 677, L145–L147 (2008).

    Article  ADS  Google Scholar 

  58. G. Narayan, “Transient downflows associated with the intensification of small-scale magnetic features and bright point formation,” Astron. Astrophys. 529, A79 (2011).

    Article  ADS  Google Scholar 

  59. D. Orozco Suárez, L. R. Bellot Rubio, J. C. del Toro Iniesta, et al., “Quiet-Sun internetwork magnetic fields from the inversion of Hinode measurements,” Astrophys. J. Lett. 670, L61–L64 (2007).

    Article  ADS  Google Scholar 

  60. N. K. Panesar, A. C. Sterling, R. L. Moore, and P. Chakrapani, “Magnetic flux cancelation as the trigger of solar quiet-region coronal jets,” Astrophys. J. Lett. 832, L7 (2016).

    Article  ADS  Google Scholar 

  61. E. Pariat, G. Aulanier, B. Schmieder, et al., “Resistive emergence of undulatory flux tubes,” Astrophys. J. 614, 1099–1112 (2004).

    Article  ADS  Google Scholar 

  62. E. N. Parker, “Hydraulic concentration of magnetic fields in the solar photosphere. VI. Adiabatic cooling and concentration in downdrafts,” Astrophys. J. 221, 368–377 (1978).

    Article  ADS  Google Scholar 

  63. H. Peter, H. Tian, W. Curdt, et al., “Hot explosions in the cool atmosphere of the Sun,” Science 346, 1255726 (2014).

    Article  Google Scholar 

  64. N. E. Piskunov, F. Kupka, T. A. Ryabchikova, et al., “VALD: The Vienna Atomic Line Data base,” Astron. Astrophys. Suppl. Ser. 112, 525–535 (1995).

    ADS  Google Scholar 

  65. K. G. Puschmann, B. Ruiz Cobo, M. Vázquez, et al., “Time series of high resolution photospheric spectra in a quiet region of the Sun. II. Analysis of the variation of physical quantities of granular structures,” Astron. Astrophys. 441, 1157–1169 (2005).

    Article  ADS  Google Scholar 

  66. A. Reid, M. Mathioudakis, J. G. Doyle, et al., “Magnetic flux cancellation in Ellerman bombs,” Astrophys. J. 823, 110 (2016).

    Article  ADS  Google Scholar 

  67. A. Reid, M. Mathioudakis, E. Scullion, et al., “Ellerman bombs with jets: Cause and effect,” Astrophys. J. 805, 64 (2015).

    Article  ADS  Google Scholar 

  68. I. S. Requerey, J. C. Del Toro Iniesta, L. R. Bellot Rubio, et al., “The history of a quiet-Sun magnetic element revealed by IMaX/SUNRISE,” Astrophys. J. 789, 6 (2014).

    Article  ADS  Google Scholar 

  69. L. H. M. Rouppe van der Voort, R. J. Rutten, and G. J. M. Vissers, “Reconnection brightenings in the quiet solar photosphere,” Astron. Astrophys. 592, A100 (2016).

    Article  ADS  Google Scholar 

  70. F. Rubio da Costa, S. K. Solanki, S. Danilovic, et al., “Centre-to-limb properties of small, photospheric quiet-Sun jets,” Astron. Astrophys. 574, A95 (2015).

    Article  ADS  Google Scholar 

  71. B. Ruiz Cobo and J. C. del Toro Iniesta, “Inversion of Stokes profiles,” Astrophys. J. 398, 375–385 (1992).

    Article  ADS  Google Scholar 

  72. R. J. Rutten, “Hα features with hot onsets. I. Ellerman bombs,” Astron. Astrophys. 590, A124 (2016).

    Article  ADS  Google Scholar 

  73. R. J. Rutten, L. H. M. Rouppe van der Voort, and G. J. M. Vissers, “Ellerman bombs at high resolution. IV. Visibility in Na I and Mg I,” Astrophys. J. 808, 133 (2015).

    Article  ADS  Google Scholar 

  74. R. J. Rutten, G. J. M. Vissers, L. H. M. Rouppe van der Voort, P. Shtterlin, and N. Vitas, “Ellerman bombs: Fallacies, fads, usage,” J. Phys. Conf. Series. 440, 012007 (2013).

    Article  Google Scholar 

  75. G. B. Scharmer, K. Bjelksjö, T. K. Korhonen, B. Lindberg, and B. Petterson, “The 1-meter Swedish solar telescope,” in Innovative Telescopes and Instrumentation for Solar Astrophysics, Waikoloa, HI, August 24–28, 2002, Ed. by S. L. Keil and S. V. Avakyan (SPIE, Washington, DC, 2003), in Ser. Proceedings of SPIE, Vol. 4853, pp. 341–350.

  76. G. B. Scharmer, G. Narayan, T. Hillberg, et al., “CRISP spectropolarimetric imaging of penumbral fine structure,” Astrophys. J. Lett. 689, L69–L72 (2008).

    Article  ADS  Google Scholar 

  77. M. Schüssler, “Theoretical aspects of small-scale photospheric magnetic fields,” in Solar Photosphere: Structure, Convection, and Magnetic Fields, Ed. by R. J. Rutten and G. Severino, (Kluwer, Dordrecht, 1990), pp. 161–179.

    Google Scholar 

  78. M. Schüssler, “Small-scale photospheric magnetic fields,” in The Sun: A Laboratory for Astrophysics, Proc. NATO Advanced Study Institute, Crieff, Scotland, 1992, Ed. by J. T. Schmelz, J. C. Brown (Reidel, Dordrecht, 1992), in Ser.: NATO Advanced Science Institutes (ASI) Series C, Vol. 373, p. 191.

  79. N. Shchukina and J. Trujillo Bueno, “The Iron line formation problem in three-dimensional hydrodynamic models of Solar-like photospheres,” Astrophys. J. 550, 970–990 (2001).

    Article  ADS  Google Scholar 

  80. V. A. Sheminova and A. S. Gadun, “Evolution of solar magnetic tubes from observations of Stokes parameters,” Astron. Rep. 44, 701–710 (2000).

    Article  ADS  Google Scholar 

  81. H. Socas-Navarro and R. Manso Sainz, “Shocks in the quiet solar photosphere: A rather common occurrence,” Astrophys. J. 620, L71–L74 (2005).

    Article  ADS  Google Scholar 

  82. S. K. Solanki, “Small-scale solar magnetic fields — An overview,” Space Sci. Rev. 63, 1–188 (1993).

    Article  ADS  Google Scholar 

  83. S. K. Solanki, “Photospheric magnetic field: Quiet Sun,” in Proc. Conf. Solar Polarization 5: In Honor of Jan Stenflo, Ascona, Switzerland, Sept.17–21, 2007, Ed. by S. V. Berdyugina, K. N. Nagendra, and R. Ramelli (ASP, San Francisco, CA, 2009), in Ser.: ASP Conference Series, Vol. 405, p. 135.

  84. H. C. Spruit, “Convective collapse of flux tubes,” Sol. Phys. 61, 363–378 (1979).

    Article  ADS  Google Scholar 

  85. O. Steiner, U. Grossmann-Doerth, M. Knölker, and M. Schüssler, “Dynamical interaction of solar magnetic elements and granular convection: Results of a numerical simulation,” Astrophys. J. 495, 468–484 (1998).

    Article  ADS  Google Scholar 

  86. J. O. Stenflo, “Small-scale magnetic structures on the Sun,” Astron. Astrophys. Rev. 1, 3–48 (1989).

    Article  ADS  Google Scholar 

  87. J. O. Stenflo, “Magnetic fields on the quiet Sun,” Cent. Eur. Astrophys. Bull., 1–18 (2011).

  88. Y. Suematsu, S. Tsuneta, K. Ichimoto, et al., “The Solar Optical Telescope of Solar-B (Hinode): The optical telescope assembly,” Sol. Phys. 249, 197–220 (2008).

    Article  ADS  Google Scholar 

  89. A. Takeuchi, “Properties of convective instability in a vertical photospheric magnetic flux tube,” Astrophys. J. 522, 518–523 (1999).

    Article  ADS  Google Scholar 

  90. J. Trujillo Bueno, N. G. Shchukina, and A. Asensio Ramos, “A substantial amount of hidden magnetic energy in the quiet Sun,” Nature 430, 326–329 (2004).

    Article  ADS  Google Scholar 

  91. S. Tsuneta, K. Ichimoto, Y. Katsukawa, et al., “The Solar Optical Telescope for the Hinode mission: An overview,” Sol. Phys. 249, 167–196 (2008).

    Article  ADS  Google Scholar 

  92. D. Utz, J. Jurčák, A. Hanslmeier, et al., “Magnetic field strength distribution of magnetic bright points inferred from filtergrams and spectro-polarimetric data,” Astron. Astrophys. 554, A65 (2013).

    Article  Google Scholar 

  93. D. Utz, T. van Doorsselaere, N. Magyar, et al., “P-mode induced convective collapse in vertical expanding magnetic flux tubes?,” in Fine Structure and Dynamics of the Solar Atmosphere: Proc. 327th International Astronomical Union Symp., Cartagena de Indias, Colombia, Oct. 9–14, 2016 (Cambridge Univ. Press., Cambridge, 2017), in Ser.: IAU Symposium, Vol. 327, pp. 86–93.

  94. S. Vargas Domínguez, J. Palacios, L. Balmaceda, et al., “Evolution of small-scale magnetic elements in the vicinity of granular-sized swirl convective motions,” Sol. Phys. 290, 301–319 (2015).

    Article  ADS  Google Scholar 

  95. G. J. M. Vissers, L. H. M. Rouppe van der Voort, and R. J. Rutten, “Ellerman bombs at high resolution. II. Triggering, visibility, and effect on upper atmosphere,” Astrophys. J. 774, 32–46 (2013).

    Article  ADS  Google Scholar 

  96. G. J. M. Vissers, L. H. M. Rouppe van der Voort, R. J. Rutten, et al., “Ellerman bombs at high resolution. III. Simultaneous observations with IRIS and SST,” Astrophys. J. 812, 11 (2015).

    Article  ADS  Google Scholar 

  97. A. Vögler, S. Shelyag, M. Schüssler, et al., “Simulations of magneto-convection in the solar photosphere. Equations, methods, and results of the MURaM code,” Astron. Astrophys. 429, 335–351 (2005).

    Article  ADS  Google Scholar 

  98. H. Watanabe, R. Kitai, K. Okamoto, et al., “Spectropolarimetric observation of an emerging flux region: Triggering mechanisms of Ellerman bombs,” Astrophys. J. 684, 736–746 (2008).

    Article  ADS  Google Scholar 

  99. E. Wiehr, B. Bovelet, and J. Hirzberger, “Brightness and size of small-scale solar magnetic flux concentrations,” Astron. Astrophys. 422, L63–L66 (2004).

    Article  ADS  Google Scholar 

  100. L. Yelles Chaouche, S. K. Solanki, and M. Schüssler, “Comparison of the thin flux tube approximation with 3D MHD simulations,” Astron. Astrophys. 504, 595–603 (2009).

    Article  ADS  MATH  Google Scholar 

  101. P. R. Young, “Dark jets in solar coronal holes,” Astrophys. J. 801, 124 (2015).

    Article  ADS  Google Scholar 

  102. V. B. Yurchyshyn, P. R. Goode, V. I. Abramenko, and O. Steiner, “On the origin of intergranular jets,” Astrophys. J. Lett. 736, L35, 1–6 (2011).

    Article  Google Scholar 

  103. Th. G. Zachariadis, C. E. Alissandrakis, and G. Banos, “Observations of Ellerman bombs in Hα,” Sol. Phys. 108, 227–236 (1987).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to M.S.G. Löfdahl for providing technical observation data on SST/CRISP and for training on the use of the CRISPRED data-processing pipeline. The Swedish 1-m solar telescope operates on La Palma Island under the guidance of the Institute of Solar Physics at the University of Stockholm in the Spanish Observatory Roque de los Muchachos at the Canary Institute of Astrophysics. A.V. Sukhorukov is grateful to the Ministry of Economy and Business of Spain for financial support.

Funding

The work was carried out with the partial support of the Ministry of Education and Science of Ukraine at the Ivan Franko National University of Lviv in the framework of research work on the project AO-91F. The work was financially supported by the Ministry of Economy and Business of Spain in the framework of the 2015 Severo Ochoa program, registration number SEV-2015-0548.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. I. Stodilka, A. V. Sukhorukov or A. I. Prysiazhnyi.

Additional information

Translated by S. Avodkova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stodilka, M.I., Sukhorukov, A.V. & Prysiazhnyi, A.I. Diagnostics of the Quiet Sun Atmosphere’s Photospheric Jets. Kinemat. Phys. Celest. Bodies 35, 231–251 (2019). https://doi.org/10.3103/S0884591319050040

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0884591319050040

Navigation