Skip to main content
Log in

Abnormal Stokes Profiles of the Photospheric Lines in the Region of Chromospheric Dual Flows in the Surroundings of a Solar Pore: 2. Photospheric Models

  • SOLAR PHYSICS
  • Published:
Kinematics and Physics of Celestial Bodies Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The thermodynamic parameters and parameters of the photospheric magnetic field in the region of chromospheric dual flows in the vicinity of a small pore in the active region NOAA 11024 are presented. The dual chromospheric flows that appeared in the region of abnormal Stokes V profiles of the photospheric lines were associated with the emergence of a new small-scale magnetic flux of positive polarity. Semiempirical photospheric models were obtained by inversion using the SIR program (Stokes Inversion based on Response functions) [42]. Each model contains two components: two thin magnetic flux tubes of different polarity. The magnetic flux has a negative polarity in the first component and positive in the second. The Stokes profiles of the photospheric lines Fe I λ 630.15, 630.25, and 630.35 nm and Ti I λ 630.38 nm from the spectropolarimetric observations with the French–Italian telescope THEMIS (Tenerife, Spain) were used for modeling. The altitudinal dependences of the temperature, line of sight velocity, inclination angle of the magnetic field vector, and azimuth angle in the tubes, as well as the values of the magnetic field strength and macroturbulent velocity, are obtained. The time variations in all parameters of the photosphere are revealed. The new magnetic flux emerged in the region of mixed polarities and was accompanied by the heating of the photosphere and chromosphere. The inferred flux tube models show the temperature enhancement by 400 K in the upper photospheric layers relative to the quiet-Sun model temperature. They indicate a complex, inhomogeneous small-scale structure of the magnetic field and the velocity field. The magnetic field strength in the tubes varies from 0.03 to 0.13 T during the period under consideration. The inclination angles of the magnetic field vector and the azimuth angles strongly differ in magnetic flux tubes and vary in time. The line-of-sight velocity does not exceed 2 km/s. The downflows in the lower layers of the photosphere and the upflows in the upper layers dominate in the first component of the models. In the second component of the model, the material in the upper photosphere is lifted. The macroturbulent velocity in most cases exceeds its value for the unperturbed photosphere. The velocity is greater in the second component of the models. The emergence of the new magnetic flux could lead to the magnetic reconnection and occurrence of a microflare.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. N. Bernasconi, S. U. Keller, S. K. Solanki, and J. O. Stenflo, “Complex magnetic fields in an active region,” Astron. Astrophys. 329, 704–720 (1998).

    ADS  Google Scholar 

  2. J. J. Brants, “High-resolution spectroscopy of active regions. III — Relations between the intensity, velocity, and magnetic structure in an emerging flux region,” Sol. Phys. 98, 197–217 (1985).

    Article  ADS  Google Scholar 

  3. D. Buöhler, A. Lagg, S. K. Solanki, and M. van Noort, “Properties of solar plage from a spatially coupled inversion of Hinode SP data,” Astron. Astrophys. 576, A27 (2015).

    Article  ADS  Google Scholar 

  4. T. A. Carroll and M. Kopf, “The meso-structured magnetic atmosphere. A stochastic polarized radiative transfer approach,” Astron. Astrophys. 468, 323–339 (2007).

    Article  ADS  Google Scholar 

  5. R. Centeno, J. Blanco Rodríguez, J. C. Del Togo Iniesta, et al., “A tale of two emergences: Sunrise II observations of emergence sites in a solar active region,” Astrophys. J. Suppl. Ser. 229, 3 (2017).

    Article  ADS  Google Scholar 

  6. R. Centeno, H. Socas-Navarro, B. Lites, et al., “Emergence of small-scale magnetic loops in the quiet-Sun internetwork,” Astrophys. J. 666, L137–L140 (2007).

    Article  ADS  Google Scholar 

  7. D. P. Choudhary and K. S. Balasubramaniam, “Multiheight properties of moving magnetic features,” Astrophys J. 664, 1228–1233 (2007).

    Article  ADS  Google Scholar 

  8. S. Danilovic, B. Beeck, A. Pietarila, et al., “Transverse component of the magnetic field in the solar photosphere observed by SUNRISE,” Astrophys. J. Lett. 723, L149–L153 (2010).

    Article  ADS  Google Scholar 

  9. D. Degenhardt, “Stationary siphon flows in thin magnetic flux tubes. II — Radiative heat exchange with the surroundings,” Astron. Astrophys. 248, 637–646 (1991).

    ADS  MATH  Google Scholar 

  10. W. Deinzer, G. Hensler, M. Schüssler, and E. Weisshaar, “Model calculations of magnetic flux tubes. I. Equations and method,” Astron. Astrophys. 139, 426–434 (1984).

    ADS  Google Scholar 

  11. W. Deinzer, G. Hensler, M. Schussler, and E. Weisshaar, “Model calculations of magnetic flux tubes. II. Stationary results for solar magnetic elements,” Astron. Astrophys. 139, 435–449 (1984).

    ADS  Google Scholar 

  12. I. Dominguez Cerdeña, J. Sánchez Almeida, and F. Kneer, “Quiet Sun magnetic fields from simultaneous inversions of visible and infrared spectropolarimetric observations,” Astrophys. J. 646, 1421–1435 (2006).

    Article  ADS  Google Scholar 

  13. C. E. Fischer, C. U. Keller, F. Snik, et al., “Unusual Stokes V profiles during flaring activity of a delta sunspot,” Astron. Astrophys. 547, A34 (2012).

    Article  Google Scholar 

  14. M. Franz, M. Collados, C. Bethge, et al., “Magnetic fields of opposite polarity in sunspot penumbrae,” Astron. Astrophys. 596, A4 (2016).

    Article  Google Scholar 

  15. M. Franz and R. Schlichenmaier, “The velocity field of sunspot penumbrae. II. Return flow and magnetic fields of opposite polarity,” Astron. Astrophys. 550, A97 (2013).

    Article  ADS  Google Scholar 

  16. E. N. Frazier and J. O. Stenflo, “On the small-scale structure of solar magnetic fields,” Sol. Phys. 27, 330–346 (1972).

    Article  ADS  Google Scholar 

  17. A. S. Gadun, S. K. Solanki, V. A. Sheminova, and S. R. O. Ploner, “A formation mechanism of magnetic elements in regions of mixed polarity,” Sol. Phys. 203, 1–7 (2001).

    Article  ADS  Google Scholar 

  18. O. Gingerich, R. W. Noyes, W. Kalkofen, and Y. Cuny, “The Harvard–Smithsonian Reference Atmosphere,” Sol. Phys. 18, 347–365 (1971).

    Article  ADS  Google Scholar 

  19. P. Gomory, C. Beck, H. Balthasar, et al., “Magnetic loop emergence within a granule,” Astron. Astrophys. 511, A14 (2010).

    Article  Google Scholar 

  20. U. Grossmann-Doerth, M. Schussler, M. Sigwarth, and O. Steiner, “Strong Stokes V asymmetries of photospheric spectral lines: What can they tell us about the magnetic field structure?,” Astron. Astrophys. 357, 351–358 (2000).

    ADS  Google Scholar 

  21. S. L. Guglielmino, V. Martinez Pillet, J. A. Bonet, et al., “The frontier between small-scale bipoles and ephemeral regions in the solar photosphere: emergence and decay of an intermediate-scale bipole observed with SUNRISE/IMaX,” Astrophys. J. 745, 160 (2012).

    Article  ADS  Google Scholar 

  22. S. S. Hasan, “Convective instability in a solar flux tube. II. Nonlinear calculations with horizontal radiative heat transport and finite viscosity,” Astron. Astrophys. 143, 39–45 (1985).

  23. R. Ishikawa and S. Tsuneta, “Comparison of transient horizontal magnetic fields in a plage region and in the quiet Sun,” Astron. Astrophys. 495, 607–612 (2009).

    Article  ADS  Google Scholar 

  24. R. Ishikawa, S. Tsuneta, K. Ichimoto, et al., “Transient horizontal magnetic fields in solar plage regions,” Astron. Astrophys. 481, 25–28 (2008).

    Article  ADS  Google Scholar 

  25. E. V. Khomenko, M. Collados, S. K. Solanki, et al., “Quiet-Sun inter-network magnetic fields observed in the infrared,” Astron. Astrophys. 408, 1115–1135 (2003).

    Article  ADS  Google Scholar 

  26. E. V. Khomenko, S. Shelyag, S. K. Solanki, and A. Vögler, “Stokes diagnostics of simulations of magnetoconvection of mixed-polarity quiet-Sun regions,” Astron. Astrophys. 442, 1059–1078 (2005).

    Article  ADS  Google Scholar 

  27. N. N. Kondrashova, “Abnormal Stokes profiles of the photospheric lines in the region of chromospheric dual flows in the surroundings of a solar pore,” Kinematics Phys. Celestial Bodies 34, 53–67 (2018).

    Article  ADS  Google Scholar 

  28. M. Kubo, B. Chye Low, and B. W. Lites, “Unresolved mixed polarity magnetic fields at flux cancellation site in solar photosphere at 0.3'' spatial resolution,” Astrophys. J. Lett. 793, L9 (2014).

    Article  ADS  Google Scholar 

  29. A. Lagg, S. K. Solanki, H.-P. Doerr, et al., “Probing deep photospheric layers of the quiet Sun with high magnetic sensitivity,” Astron. Astrophys. 596, A6 (2016).

    Article  Google Scholar 

  30. U. M. Leiko and N. N. Kondrashova, “The chromospheric line-of-sight velocity variations in a solar microflare,” Adv. Space Res. 55, 886–890 (2015).

    Article  ADS  Google Scholar 

  31. U. M. Leiko and N. N. Kondrashova, “Dual chromospheric flows in the vicinity of a small pore,” Kinematics Phys. Celestial Bodies 33, 111–121 (2017).

    Article  ADS  Google Scholar 

  32. B. W. Lites, A. Skumanich, and V. Martínez Pillet, “Vector magnetic fields of emerging solar flux. I. Properties at the site of emergence,” Astron. Astrophys. 333, 1053–1068 (1998).

    ADS  Google Scholar 

  33. M. J. Martínez González and L. R. Bellot Rubio, “Emergence of small-scale magnetic loops through the quiet solar atmosphere,” Astrophys. J. 700, 1391–1403 (2009).

    Article  ADS  Google Scholar 

  34. M. J. Martínez González, L. R. Bellot Rubio, S. K. Solanki, et al., “Resolving the internal magnetic structure of the solar network,” Astrophys. J. Lett. 758, L40 (2012).

    Article  ADS  Google Scholar 

  35. G. Narayan, “Transient downflows associated with the intensification of small-scale magnetic features and bright point formation,” Astron. Astrophys. 529, A79 (2011).

    Article  ADS  Google Scholar 

  36. V. A. Osherovich, “A new magneto-hydrostatic theory of sunspots,” Sol. Phys. 77, 63–68 (1982).

    Article  ADS  Google Scholar 

  37. S. R. O. Ploner, M. Schüssler, S. K. Solanki, et al., “The formation of one-lobed Stokes V profiles in an inhomogeneous atmosphere,” in Proc. Advanced Solar Polarimetry — Theory, Observation, and Instrumentation, Ed. by M. Sigwarth (Astronomical Society of the Pacific, San Francisco, 2001) in Ser.: ASP Conference Proceedings, Vol. 236, pp. 371–378.

  38. C. Quintero Noda, J. M. Borrero, D. Orozco Suarez, and B. Ruiz Cobo, “High speed magnetized flows in the quiet Sun,” Astron. Astrophys. 569, A73 (2014).

    Article  ADS  Google Scholar 

  39. R. Rezaei, R. Schlichenmaier, W. Schmidt, and O. Steiner, “Opposite magnetic polarity of two photospheric lines in single spectrum of the quiet Sun,” Astron. Astrophys. 469, L9–L12 (2007).

    Article  ADS  Google Scholar 

  40. I. Rüedi, S. K. Solanki, W. Livingston, and J. O. Stenflo, “Infrared lines as probes of solar magnetic features. III. Strong and weak magnetic fields in plages,” Astron. Astrophys. 263, 323–338 (1992).

    ADS  Google Scholar 

  41. I. Rüedi, S. K. Solanki, and D. Rabin, “Infrared lines as probes of solar magnetic features. IV. Discovery of a sifon flows,” Astron. Astrophys. 261, L21–L24 (1992).

    ADS  Google Scholar 

  42. B. Ruiz Cobo and J. C. del Toro Iniesta, “Inversion of Stokes profiles,” Astrophys. J. 398, 375–385 (1992).

    Article  ADS  Google Scholar 

  43. A. Sainz Dalda, J. Martinez-Sykora, L. Bellot Rubio, and A. Title, “Study of single-lobed circular polarization profiles in the quiet Sun,” Astrophys. J. 748, 38 (2012).

    Article  ADS  Google Scholar 

  44. J. Sánchez Almeida, E. Landi Degl’Innocenti, V. Martínez Pillet, and B. W. Lites, “Line asymmetries and the microstructure of photospheric magnetic fields,” Astrophys. J. 466, 537–548 (1996).

    Article  ADS  Google Scholar 

  45. J. Sánchez Almeida and B. W. Lites, “Physical properties of the solar magnetic photosphere under the MISMA hypothesis. II. Network and internetwork fields at the disk center,” Astrophys. J. 532, 1215–1229 (2000).

    Article  ADS  Google Scholar 

  46. K. Sankarasubramanian and T. Rimmele, “Bisector analysis of Stokes profiles: Effects due to gradients in the physical parameters,” Astrophys. J. 576, 1048–1063 (2002).

    Article  ADS  Google Scholar 

  47. G. B. Scharmer, J. de la Cruz Rodriguez, P. Sütterlin, and V. M. J. Henriques, “Opposite polarity field with convective downflow and its relation to magnetic spines in a sunspot penumbra,” Astron. Astrophys. 553, A63 (2013).

    Article  ADS  Google Scholar 

  48. N. Shchukina and J. Trujillo Bueno, “The iron line formation problem in three-dimensional hydrodynamic models of solar-like photospheres,” Astrophys. J. 550, 970–990 (2001).

    Article  ADS  Google Scholar 

  49. V. A. Sheminova, “On the origin of the extremely asymmetric Stokes V profiles in an inhomogeneous atmosphere,” (2005). arXiv 0902.2940

  50. T. Shimizu, B. W. Lites, Y. Katsukawa, et al., “Frequent occurrence of high-speed local mass downflows on the solar surface,” Astrophys. J. 680, 1467–1476 (2008).

    Article  ADS  Google Scholar 

  51. M. Sigwarth, “Properties and origin of asymmetric and unusual Stokes V profiles observed in solar magnetic fields,” Astrophys. J. 563, 1031–1044 (2001).

    Article  ADS  Google Scholar 

  52. M. Sigwarth, K. S. Balasubramaniam, M. Knölker, and W. Schmidt, “Dynamics of solar magnetic elements,” Astron. Astrophys. 349, 941–955 (1999).

    ADS  Google Scholar 

  53. H. C. Spruit, “Convective collapse of flux tubes,” Sol. Phys. 61, 363–378 (1979).

    Article  ADS  Google Scholar 

  54. O. Steiner, G. W. Pneuman, and J. O. Stenflo, “Numerical models for solar magnetic fluxtubes,” Astron. Astrophys. 170, 126–137 (1986).

    ADS  MATH  Google Scholar 

  55. J. O. Stenflo, “Magnetic-field structure of the photospheric network,” Sol. Phys. 32, 41–63 (1973).

    Article  ADS  Google Scholar 

  56. J. O. Stenflo, “Small-scale solar magnetic fields,” in Proc. Basic Mechanisms of Solar Activity, 71st IAU Symp., Prague, Aug. 25–29, 1975, Ed. by V. Bumba and J. Kleczek (Reidel, Dordrecht, 1976), pp. 69–99.

  57. J. H. Thomas, “Siphon flows in isolated magnetic flux tubes,” Astrophys. J. 333, 407–419 (1988).

    Article  ADS  Google Scholar 

  58. J. H. Thomas and B. Montesinos, “Siphon flows in isolated magnetic flux tubes. IV — Critical flows with standing tube shocks,” Astrophys. J. 375, 404–413 (1991).

    Article  ADS  Google Scholar 

  59. G. Valori, L. M. Green, P. Démoulin, et al., “Nonlinear force-free extrapolation of emerging flux with a global twist and serpentine fine structures,” Sol. Phys. 278, 73–97 (2012).

    Article  ADS  Google Scholar 

  60. S. Vargas Domínguez, L. van Driel-Gesztelyi, and L. R. Bellot Rubio, “Granular-scale elementary flux emergence episodes in a solar active region,” Sol. Phys. 278, 99–120 (2012).

    Article  ADS  Google Scholar 

  61. B. Viticchié, “On the polarimetric signature of emerging magnetic loops in the quiet Sun,” Astrophys. J. Lett. 747, L36 (2012).

    Article  ADS  Google Scholar 

  62. B. Viticchié and J. Sánchez Almeida, “Asymmetries of the Stokes V profiles observed by HINODE SOT/SP in the quiet Sun,” Astron. Astrophys. 530, A14 (2011).

    Article  ADS  Google Scholar 

  63. B. Viticchié, J. Sánchez Almeida, D. Del Moro, and F. Berrilli, “Interpretation of HINODE SOT/SP asymmetric Stokes profiles observed in the quiet Sun network and internetwork,” Astron. Astrophys. 526, A60 (2011).

    Article  ADS  Google Scholar 

  64. Z. Xu, A. Lagg, and S. K. Solanki, “Magnetic structures of an emerging flux region in the solar photosphere and chromosphere,” Astron. Astrophys. 520, A77 (2010).

    Article  ADS  Google Scholar 

  65. I. Zayer, S. K. Solanki, and J. O. Stenflo, “The internal magnetic field distribution and the diameters of solar magnetic elements,” Astron. Astrophys. 211, 463–475 (1989).

    ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

I would like to thank E.V. Khomenko and the maintenance team of the THEMIS telescope for the help with the spectropolarimetric observations, R.I. Kostyk for providing the data processing programs, and the authors of the SIR program used in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Kondrashova.

Additional information

Translated by M. Chubarova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kondrashova, N.N. Abnormal Stokes Profiles of the Photospheric Lines in the Region of Chromospheric Dual Flows in the Surroundings of a Solar Pore: 2. Photospheric Models. Kinemat. Phys. Celest. Bodies 34, 184–197 (2018). https://doi.org/10.3103/S0884591318040049

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0884591318040049

Keywords:

Navigation