Skip to main content
Log in

Peculiarities of the abundance of chemical elements in the atmosphere of PMMR23-red supergiant in the Small Magellanic Cloud due to interstellar gas accretion

  • Physics of Stars and Interstellar Medium
  • Published:
Kinematics and Physics of Celestial Bodies Aims and scope Submit manuscript

Abstract

The chemical composition of the PMMR23 red supergiant located in the Small Magellanic Cloud (SMC) is analyzed. The abundance of 35 chemical elements and the upper limits of abundance for Tl and U are found. The relative abundance of heavy elements is higher by 0.6–1.0 dex with respect to iron peak elements. The spectra of several SMC red supergiants PMMR27, PMMR28, and PMMR144—located in the region where the velocities of stars and interstellar gas are quite high— show the emission components in the wings of the hydrogen line. This emission is not detected for PMMR23. A possibility of interstellar gas accretion on the atmospheres of PMMR23 and other supergiants in Magellanic Clouds is discussed. The analysis is carried out using spectra measured at ESO 3.6 m telescope with the spectral resolving power R = 30000.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. M. Adams, C. S. Kochanek, J. R. Gerke, K. Z. Stanek, and X. Dai, “The search for failed supernovae with the Large Binocular Telescope: Confirmation of a disappearing star,” Mon. Not. R. Astron. Soc. 468, 4968–4981 (2017). https://arxiv.org/abs/1609.01283.

    Article  ADS  Google Scholar 

  2. P. C. Allende, D. L. Lambert, and M. Asplund, “The forbidden abundance of oxygen in the Sun,” Astrophys. J. Lett. 556, L63–L66 (2001).

    Article  ADS  Google Scholar 

  3. K. Bekki, “When was the Large Magellanic Cloud accreted on to the Galaxy?,” Mon. Not. R. Astron. Soc. 416, 2359–2367 (2011).

    Article  ADS  Google Scholar 

  4. J. Biemont, P. Palmeri, and P. Quinet, Database of Rare Earths at Mons University (2002). http://www.umh. ac.be/~astro/dream.html.

    Google Scholar 

  5. E. Böhm-Vitense, “The puzzle of the metallic line stars,” Publ. Astron. Soc. Pac. 118, 419–435 (2006).

    Article  ADS  Google Scholar 

  6. A. Z. Bonanos, D. J. Lennon, F. Köhlinger, et al., “Spitzer SAGE-SMC infrared photometry of massive stars in the Small Magellanic Cloud,” Astron. J. 140, 416–429 (2010).

    Article  ADS  Google Scholar 

  7. A. Z. Bonanos, D. L. Massa, M. Sewilo, et al., “Spitzer SAGE infrared photometry of massive stars in the Large Magellanic Cloud,” Astron. J. 138, 1003–1021 (2009).

    Article  ADS  Google Scholar 

  8. M. L. Boyer, S. Srinivasan, J. Th. van Loon, et al., “Surveying the agents of galaxy evolution in the tidally stripped, low metallicity Small Magellanic Cloud (SAGE-SMC). II. Cool evolved stars,” Astron. J. 142, 103 (2011).

    Article  ADS  Google Scholar 

  9. F. Castelli and R. L. Kurucz, “New grids of ATLAS9 model atmospheres,” in Modelling of Stellar Atmospheres: Proc. 210th IAU Symp., Uppsala, Sweden, June 17–21, 2002, Ed. by N. Piskunov, W. W. Weiss, and D. F. Gray (Astron. Soc. Pac., San Francisco, CA, 2003), poster A20.

    Google Scholar 

  10. L. Delbouille, G. Roland, and L. Neven, Photometric Atlas of the Solar Spectrum from λ 3000 to λ 10000 (Inst. d’Astrophis. de l’Univ. de Lillge, Cointe-Ougree, Belgium, 1973). Magnetic tape copy.

    Google Scholar 

  11. E. A. Den Hartog, J. E. Lawler, C. Sneden, and J. J. Cowan, “Improved laboratory transition probabilities for Nd II and application to the neodymium abundances of the Sun and three metal-poor stars,” Astrophys. J. Suppl. Ser. 148, 543–566 (2003).

    Article  ADS  Google Scholar 

  12. J. H. Elias, J. A. Frogel, and R. A. Humphreys, “M supergiants in the Milky Way and the Magellanic Clouds: Colors, spectral types, and luminosities,” Astrophys. J. Suppl. Ser. 57, 91–131 (1985).

    Article  ADS  Google Scholar 

  13. J. R. Fuhr and W. L. Wiese, “A critical compilation of atomic transition probabilities for neutral and singly ionized iron,” J. Phys. Chem. Ref. Data 35, 1669–1809 (2006).

    Article  ADS  Google Scholar 

  14. J. R. Gerke, C. S. Kochanek, and K. Z. Stanek, “The search for failed supernovae with the Large Binocular Telescope: First candidates,” Mon. Not. R. Astron. Soc. 150, 3289–3305 (2015).

    Article  ADS  Google Scholar 

  15. C. González-Fernández, R. Dorda, I. Negueruela, and A. Marco, “A new survey of cool supergiants in the Magellanic Clouds,” Astron. Astrophys. 578, A3 (2015).

    Article  Google Scholar 

  16. V. F. Gopka, A. V. Shavrina, V. A. Yushchenko, et al., “On the thorium absorption lines in the visible spectra of supergiant stars in the Magellanic Clouds,” Bull. Crimean Astrophys. Observatory 109, 41–47 (2013).

    Article  ADS  Google Scholar 

  17. V. F. Gopka, S. V. Vasil’eva, A. V. Yushchenko, and S. M. Andrievsky, “Thorium lines in the spectra of several SMC supergiant stars,” Odessa Astron. Publ. 20, 58–61 (2007).

    ADS  Google Scholar 

  18. V. F. Gopka, A. V. Yushchenko, S. M. Andrievsky, et al., “The abundances of chemical elements in the atmospheres of K-supergiants in the Small Magellanic Cloud and Arcturus,” in From Lithium to Uranium: Elemental Tracers of Early Cosmic Evolution, Paris, France: Proc. 228th IAU Symp., May 23–27, 2005 (Cambridge Univ. Press, Cambridge, MA, 2007), pp. 535–536.

    Google Scholar 

  19. V. Gopka, A. Yushchenko, V. Kovtyukh, et al., “The abundances of heavy elements in red supergiants of Magellanic Clouds,” Odessa Astron. Publ. 26, 54–59 (2013).

    ADS  Google Scholar 

  20. V. F. Gopka, A. V. Yushchenko, T. V. Mishenina, et al., “Atmospheric chemical composition of the halo star HD 221170 from a synthetic-spectrum analysis,” Astron. Rep. 48, 577–587 (2004).

    Article  ADS  Google Scholar 

  21. J. L. Greenstein, “Analysis of the metallic-line stars. II.,” Astrophys. J. 109, 121–138 (1949).

    Article  ADS  Google Scholar 

  22. N. Grevesse, M. Asplund, A. J. Sauval, and P. Scott, “The chemical composition of the Sun,” Astrophys. Space Sci. 328, 179–183 (2010).

    Article  ADS  Google Scholar 

  23. N. Grevesse, P. Scott, M. Asplund, and A. J. Sauval, “The elemental composition of the Sun. III. The heavy elements Cu to Th,” Astron. Astrophys. 573, A27 (2015).

    Article  ADS  Google Scholar 

  24. O. Havnes, “Abundances and acceleration mechanisms of cosmic rays,” Nature 229, 548–549 (1971).

    Article  ADS  Google Scholar 

  25. O. Havnes, “Magnetic stars as generators of cosmic rays,” Astron. Astrophys. 13, 52–57 (1971).

    ADS  Google Scholar 

  26. O. Havnes and P. S. Conti, “Magnetic accretion processes in peculiar A stars,” Astron. Astrophys. 14, 1–11 (1971).

    ADS  Google Scholar 

  27. A. Heger, C. L. Fryer, S. E. Woosley, N. Longer, and D. H. Hartmann, “How massive single stars end their life,” Astrophys. J. 591, 288–300 (2003).

    Article  ADS  Google Scholar 

  28. V. Hill, “Chemical composition of six K supergiants in the Small Magellanic Cloud,” Astron. Astrophys. 324, 435–448 (1997).

    ADS  Google Scholar 

  29. R. W. Hildithich, I. D. Howarth, and T. J. Harries, “Forty eclypcing binaries in the Small Magellanic Cloud,” Mon. Not. R. Astron. Soc. 357, 304–324 (2006).

    Article  ADS  Google Scholar 

  30. V. Hill, V. Barbuy, and M. Spite, “Carbon, nitrogen, oxygen and lithium abundances of six cool supergiants in the SMC,” Astron. Astrophys. 323, 461–468 (1997).

    ADS  Google Scholar 

  31. R. Hirata and T. Horaguchi, “Atomic spectral line list,” SIMBAD Catalog VI/69 (1995). ftp://cdsarc.u-strasbg.fr/ pub/cats/VI/69.

    Google Scholar 

  32. R. M. Humphreys, “M supergiants and the low metal abundances in the Small Magellanic Cloud,” Astrophys. J. 231, 384–387 (1979).

    Article  ADS  Google Scholar 

  33. Y.-W. Kang, A. Yushchenko, K. Hong, S. Kim, and V. Yushchenko, “Chemical composition of the components of eclipsing binary star ZZ Bootis,” Astron. J. 144, 35 (2012).

    Article  ADS  Google Scholar 

  34. Y.-W. Kang, A. V. Yushchenko, K. Hong, E. F. Guinan, and V. F. Gopka, “Signs of accretion in the abundance patterns of the components of the RS CVn-type eclipsing binary star LX Persei,” Astron. J. 145, 167 (2013).

    Article  ADS  Google Scholar 

  35. D. E. Kelleher and L. I. Podobedava, “Atomic transition probabilities of sodium and magnesium. A critical compilation,” J. Phys. Chem. Ref. Data 37, 267–706 (2008).

    Article  ADS  Google Scholar 

  36. D. E. Kelleher and L. I. Podobedava, “Atomic transition probabilities of aluminum. A critical compilation,” J. Phys. Chem. Ref. Data. 37, 709–911 (2008).

    Article  ADS  Google Scholar 

  37. C. S. Kochanek, J. F. Beacom, M. D. Kistler, et al., “A survey about nothing: Monitoring a million supergiants for failed supernovae,” Astrophys. J. 684, 1336–1342 (2008).

    Article  ADS  Google Scholar 

  38. R. L. Kurucz, “Atomic and molecular data for opacity calculations,” Rev. Mex. Astron. Astrofis. 23, 45–48 (1992).

    ADS  Google Scholar 

  39. R. L. Kurucz, Atomic Data for Opacity Calculations, Kurucz CD-ROM No. 1–23 (Smithson. Astrophys. Obs., Cambridge, MA, 1993).

    Google Scholar 

  40. R. L. Kurucz, “An atomic and molecular data bank for stellar spectroscopy,” in Proc. Workshop on Laboratory and Astronomical High Resolution Spectra, Brussels, Belgium, Aug. 29–Sept. 2 1994, Ed. by A. J. Sauval, R. Blomme, and N. Grevesse (Astron. Soc. Pac., San Francisco, CA, 1995), in Ser.: ASP Conference Series, Vol. 81, pp. 583–588.

    ADS  Google Scholar 

  41. R. L. Kurucz and E. Peytremann, “A table of semiempirical gf values. Part 1: Wavelengths: 5.2682 nm to 272.3380 nm,” Smithsonian Astrophysical Observatory Special Report No. 362, Part 1, 1–1223 (Smithson. Astrophys. Obs., Harvard, MA, 1975).

    Google Scholar 

  42. E. M. Levesque, “Red supergiants in Local Group,” in Proc. Betelgeuse Workshop 2012: The Physics of Red Supergiants: Recent Advances and Open Questions, Ed. by P. Kervella, T. Le Bertre, and G. Perrin; EAS Publ. Ser. 60, 269–277 (2013).

    Google Scholar 

  43. K. Lodders, “Solar system abundances and condensation temperatures of the elements,” Astrophys. J. 591, 1220–1247 (2003).

    Article  ADS  Google Scholar 

  44. N. Martin, E. Maurice, and J. Lequeux, “The structure of the Small Magellanic Cloud,” Astron. Astrophys. 215, 219–242 (1989).

    ADS  Google Scholar 

  45. L. Mashonkina, T. Ryabchikova, A. Ryabtsev, and R. Kildiyarova, “Non-LTE line formation for Pr II and Pr III in A and Ap stars,” Astron. Astrophys. 495, 297–311 (2009).

    Article  ADS  Google Scholar 

  46. P. Massey and K. A. G. Olsen, “The evolution of massive stars. I. Red supergiants in the Magellanic Clouds,” Astron. J. 126, 2867–2886 (2003).

    Article  ADS  Google Scholar 

  47. R. X. McGee and L. M. Newton, “HI in the Small Magellanic Cloud re-examined,” Proc. -Astron. Soc. Aust. 4, 189–195 (1981).

    Article  ADS  Google Scholar 

  48. G. Meynet, V. Chomienne, S. Ekström, et al., “Impact of mass-loss on the evolution and pre-supernova properties of red supergiants,” Astron. Astrophys. 575, A60 (2015).

    Article  Google Scholar 

  49. D. C. Morton, “Atomic data for resonance absorption lines. II. Wavelengths longward of the Lyman limit for heavy elements,” Astrophys. J. Suppl. Ser. 130, 403–436 (2000).

    Article  ADS  Google Scholar 

  50. U. Munari, A. Henden, A. Frigo, et al., “APASS Landolt–Sloan BVgri photometry of RAVE stars. I. Data, effective temperatures, and reddenings,” Astron. J. 148, 81 (2014).

    Article  ADS  Google Scholar 

  51. S. J. Murphy and E. Paunzen, “Gaia’s view of the λ Boo star puzzle,” Mon. Not. R. Astron. Soc. 466, 546–555 (2017).

    Article  ADS  Google Scholar 

  52. H. Nilsson, S. Ivarsson, S. Johansson, and H. Lundberg, “Experimental oscillator strengths in U II of cosmological interest,” Astron. Astrophys. 381, 1090–1093 (2002).

    Article  ADS  Google Scholar 

  53. H. Nilsson, Z. G. Zhang, H. Lundberg, S. Johansson, and B. Nordström, “Experimental oscillator strengths in Th II,” Astron. Astrophys. 382, 368–377 (2002).

    Article  ADS  Google Scholar 

  54. N. E. Piskunov, F. Kupka, T. A. Ryabchikova, W. W. Weiss, and C. S. Jeffery, “VALD: The Vienna Atomic Line Data Base,” Astron. Astrophys. Suppl. Ser. 112, 525–535 (1995).

    ADS  Google Scholar 

  55. L. Prevot, N. Martin, E. Rebeirot, E. Maurice, and J. Rousseau, “A catalogue of late-type supergiant stars in the Small Magellanic Cloud,” Astron. Astrophys. Suppl. Ser. 53, 255–269 (1983).

    ADS  Google Scholar 

  56. C. R. Proffitt and G. Michaud, “Abundance anomalies in A and B stars and the accretion of nuclear-processed material from supernovae and evolved giants,” Astrophys. J. 345, 998–1007 (1989).

    Article  ADS  Google Scholar 

  57. D. Proga, S. J. Kenyon, and J. C. Raymond, “Illumination in symbiotic binary stars: Non-LTE photoionization models. II. Wind case,” Astrophys. J. 501, 339–356 (1998).

    Article  ADS  Google Scholar 

  58. J. Ren, N. Christlieb, and G. Zhao, “The Hamburg/ESO R-process Enhanced Star survey (HERES). VII. Thorium abundances in metal-poor stars,” Astron. Astrophys. 537, A18 (2012).

    Article  ADS  Google Scholar 

  59. S. C. Russell, “Heavy element abundances in the Magellanic clouds,” Proc. - Astron. Soc. Aust. 9, 82–83 (1991).

    Article  ADS  Google Scholar 

  60. J. Simmerer, C. Sneden, J. J. Cowan, J. Collier, V. M. Woolf, and J. E. Lawler, “The rise of the s-process in the galaxy,” Astrophys. J. 617, 1091–1114 (2004).

    Article  ADS  Google Scholar 

  61. C. Siqueira Mello, V. Hill, B. Barbuy, et al., “High-resolution abundance analysis of very metal-poor r-I stars,” Astron. Astrophys. 565, A93 (2014).

    Article  Google Scholar 

  62. D. J. Smartt, “Observational constraints on the progenitors of core-collapse supernovae: The case for missing high-mass stars,” Publ. Astron. Soc. Aust. 32, e016 (2015).

    Article  ADS  Google Scholar 

  63. O. Szewczyk, G. Pietrzynski, W. Gieren, et al., “The Araucaria project: The distance to the Small Magellanic Cloud from near-infrared photometry of RR Lyrae variables,” Astron. J. 138, 1661–1666 (2009).

    Article  ADS  Google Scholar 

  64. K. A. Venn and D. L. Lambert, “The chemical composition of three Lambda Bootis stars,” Astrophys. J. 363, 234–244 (1990).

    Article  ADS  Google Scholar 

  65. K. A. Venn and D. L. Lambert, “Could the ultra-metal-poor stars be chemically peculiar and not related to the first stars?,” Astrophys. J. 677, 572–580 (2008).

    Article  ADS  Google Scholar 

  66. A. V. Yushchenko, “URAN: A software system for the analysis of stellar spectra,” in Proc. 20th Stellar Conf. of the Czech and Slovak Astronomical Institutes, Brno, Czech Republic, Nov. 5–7, 1997, Ed. by J. Dusek (N. Copernicus Obs. and Planetarium Brno, Brno, 1998), pp. 201–203.

    Google Scholar 

  67. A. Yushchenko, V. Gopka, S. Goriely, et al., “Thorium-rich halo star HD221170: Further evidence against the universality of the r-process,” Astron. Astrophys. 430, 255–262 (2005).

    Article  ADS  Google Scholar 

  68. A. V. Yushchenko, V. F. Gopka, Y.-W. Kang, et al., “The chemical composition of ? Puppis and the signs of accretion in the atmospheres of B–F-type stars,” Astron. J. 149, 59 (2015).

    Article  ADS  Google Scholar 

  69. A. V. Yushchenko, V. F. Gopka, V. L. Khokhlova, F. A. Musaev, and I. F. Bikmaev, “Atmospheric chemical composition of the “twin” components of equal mass in the CP SB2 system 66 Eri,” Astron. Lett. 25, 453–466 (1999).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Yushchenko.

Additional information

Published in Ukrainian in Kinematika i Fizika Nebesnykh Tel, 2017, Vol. 33, No. 5, pp. 3–26.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yushchenko, A.V., Gopka, V.F., Shavrina, A.V. et al. Peculiarities of the abundance of chemical elements in the atmosphere of PMMR23-red supergiant in the Small Magellanic Cloud due to interstellar gas accretion. Kinemat. Phys. Celest. Bodies 33, 199–216 (2017). https://doi.org/10.3103/S0884591317050075

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0884591317050075

Navigation