Skip to main content
Log in

Center-to-limb variation of the continuum intensity and linear polarization of stars with transiting exoplanets

  • Physics of Stars and Interstellar Medium
  • Published:
Kinematics and Physics of Celestial Bodies Aims and scope Submit manuscript

Abstract

The limb darkening and center-to-limb variation of the continuum polarization is calculated for a grid of one-dimensional stellar model atmospheres and for a wavelength range between 300 and 950 nm. Model parameters match those of the transiting stars taken from the NASA exoplanet archive. The limb darkening of the continuum radiation for these stars is shown to decrease with the rise in their effective temperature. For the λ = 370 nm wavelength, which corresponds to the maximum of the Johnson–Cousins UX filter, the limb darkening values of the planet transiting stars lie in a range between 0.03 and 0.3. The continuum linear polarization depends not only on the effective temperature of the star but also on its gravity and metallicity. Its value decreases for increasing values of these parameters. In the UX band, the maximum linear polarization of stars with transiting planets amounts to 4%, while the minimum value is approximately 0.3%. The continuum limb darkening and the linear polarization decrease rapidly with wavelength. At the R band maximum (λ = 700 nm), the linear polarization close to the limb is in fact two orders of magnitude smaller than in the UX band. The center- to-limb variation of the continuum intensity and the linear polarization of the stars with transiting planets can be approximated, respectively, by polynomials of the fourth and the sixth degree. The coefficients of the polynomials, as well as the IDL procedures for reading them, are available in electronic form. It is shown that there are two classes of stars with high linear polarization at the limb. The first one consists of cold dwarfs. Their typical representatives are HATS-6, Kepler-45, as well as all the stars with similar parameters. The second class of stars includes hotter giants and subgiants. Among them we have CoRoT-28, Kepler-91, and the group of stars with effective temperatures and gravities of approximately 5000 K and 3.5, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. W. Allen, Astrophysical Quantities (Athlone, London, 1973; Mir, Moscow, 1977).

    Google Scholar 

  2. V. V. Sobolev, Course in Theoretical Astrophysics (Nauka, Moscow, 1967; NASA, Washington, DC, 1969).

    Google Scholar 

  3. J. M. Almenara, F. Bouchy, P. Gaulme, et al., “Transiting exoplanets from the CoRoT space mission. XXIV. CoRoT-25b and CoRoT-26b: two low-density giant planets,” Astron. Astrophys. 555, A118 (2013).

    Article  Google Scholar 

  4. S. V. Berdyugina, A. V. Berdyugin, D. M. Fluri, and V. Piirola, “First detection of polarized scattered light from an exoplanetary atmosphere,” Astrophys. J. Lett. 673, L83 (2008).

    Article  ADS  Google Scholar 

  5. S. V. Berdyugina, A. V. Berdyugin, D. M. Fluri, and V. Piirola, “Polarized reflected light from the exoplanet HD189733B: First multicolor observations and confirmation of detection,” Astrophys. J. Lett. 728, L6 (2011).

    Article  ADS  Google Scholar 

  6. M. S. Bessel, “UBVRI passbands,” Publ. Astron. Soc. Pac. 102, 1181–1199 (1990).

    Article  ADS  Google Scholar 

  7. A. Bonfanti, S. Ortolani, and V. Nascimbeni, “Age consistency between exoplanet hosts and field stars,” Astron. Astrophys. 585, A5 (2016).

    Article  ADS  Google Scholar 

  8. W. J. Borucki, D. G. Koch, G. Basri, et al., “Characteristics of planetary candidates observed by Kepler. II. Analysis of the first four months of data,” Astrophys. J. 736, 19 (2011).

    Article  ADS  Google Scholar 

  9. F. Bouchy, S. Udry, M. Mayor, et al., “ELODIE metallicity-biased search for transiting Hot Jupiters. II. A very hot Jupiter transiting the bright K star HD 189733,” Astron. Astrophys. 444, L15–L19 (2005).

    Article  ADS  Google Scholar 

  10. J. H. M. J. Bruls, “The formation of helioseismology lines. IV — The NI I 676.8 NM intercombination line,” Astron. Astrophys. 269, 509–517 (1993).

    ADS  Google Scholar 

  11. L. A. Buchhave, D. W. Latham, J. A. Carter, et al., “Kepler-14b: A massive hot Jupiter transiting an F star in a close visual binary,” Astrophys. J., Suppl. Ser. 197, 3–10 (2011).

    Article  ADS  Google Scholar 

  12. K. A. Burlov-Vasiljev, E. A. Gurtovenko, and Yu. B. Matvejev, “New absolute measurements of the solar spectrum 310–685 nm,” Sol. Phys. 157, 51–73 (1995).

    Article  ADS  Google Scholar 

  13. K. A. Burlov-Vasiljev, Yu. B. Matvejev, and I. E. Vasiljeva, “New measurements of the solar disk-center spectral intensity in the near IR from 645 nm to 1070 nm,” Sol. Phys. 177, 25–40 (1998).

    Article  ADS  Google Scholar 

  14. J. Cabrera, Sz. Csizmadia, G. Montagnier, et al., “Transiting exoplanets from the CoRoT space mission. XXVII. CoRoT-28b, a planet orbiting an evolved star, and CoRoT-29b, a planet showing an asymmetric transit,” Astron. Astrophys. 579, A36 (2015).

    Article  Google Scholar 

  15. A. C. Carciofi and A. M. Magalhães, “The polarization signature of extrasolar planet transiting cool dwarfs,” Astrophys. J. 635, 570–577 (2005).

    Article  ADS  Google Scholar 

  16. L. Casagrande, R. Schönrich, M. Asplund, et al., “New constraints on the chemical evolution of the solar neighbourhood and Galactic disc(s). Improved astrophysical parameters for the Geneva–Copenhagen Survey,” Astron. Astrophys. 530, A138 (2011).

    Article  Google Scholar 

  17. S. Chandrasekhar, “On the radiative equilibrium of a stellar atmosphere. X,” Astrophys. J. 103, 351–370 (1946).

    Article  ADS  MathSciNet  Google Scholar 

  18. A. Claret, “A new non-linear limb-darkening law for LTE stellar atmosphere models. Calculations for–5.0 <= log[M/H] <= +1, 2000 K <= Teff <= 50000 K at several surface gravities,” Astron. Astrophys. 363, 1081–1190 (2000).

    ADS  Google Scholar 

  19. A. D. Code, “Radiative equilibrium in an atmosphere in which pure scattering and pure absorption both play a role,” Astrophys. J. 112, 22–24 (1950).

    Article  ADS  MathSciNet  Google Scholar 

  20. M. Feldt, M. Turatto, H. M. Schmid, et al., “"Planet Finder” instrument for the ESO VLT,” in Proc. Towards Other Earths — DARWIN/TPF and the Search for Extrasolar Terrestrial Planets, Heidelberg, Germany. Apr. 22–25, 2003, Ed. by M. Fridlund and T. Henning (Eur. Space Agency, Noordwijk, 2003), pp. 99–107.

    Google Scholar 

  21. A. D. Fluri, J. O. Stenflo, “Continuum polarization in the solar spectrum,” Astrophys. J. 341, 902–911 (1999).

    ADS  Google Scholar 

  22. K. Frantseva, N. M. Kostogryz, and T. M. Yakobchuk, “Simulation of polarimetric effects in planetary system HD 189733,” Adv. Astron. Space Phys. 2, 146–148 (2012).

    ADS  Google Scholar 

  23. K. Fuhrmann, “Nearby stars of the Galactic disc and halo — IV,” Mon. Not. R. Astron. Soc. 384, 173–224 (2008).

    Article  ADS  Google Scholar 

  24. L. Ghezzi, K. Cunha, V. V. Smith, et al., “Stellar parameters and metallicities of stars hosting Jovian and Neptunian mass planets: A possible dependence of planetary mass on metallicity,” Astrophys. J. 720, 1290–1302 (2010).

    Article  ADS  Google Scholar 

  25. G. Gonzalez, M. K. Carlson, and R. W. Tobin, “Parent stars of extrasolar planets — X. Lithium abundances and v sin i revisited,” Mon. Not. R. Astron. Soc. 403, 1368–1380 (2010).

    Article  ADS  Google Scholar 

  26. R. O. Gray, C. J. Corbally, R. F. Garrison, et al., “Contributions to the nearby stars (NSTARS) project: Spectroscopy of stars earlier than M0 within 40 parsecs: The northern sample. I,” Astron. J. 126, 2048–2059 (2003).

    Article  ADS  Google Scholar 

  27. J. P. Harrington, “The intrinsic polarization of Mira Variables,” Astrophys. Lett. 3, 165–168 (1969).

    Article  ADS  Google Scholar 

  28. J. P. Harrington, “Polarization of radiation from stellar atmospheres. The grey case,” Astrophys. Space Sci. 8, 227–242 (1970).

    Article  ADS  Google Scholar 

  29. J. D. Hartman, D. Bayliss, R. Brahm, et al., “HATS-6b: A warm Saturn transiting an early M dwarf star, and a set of empirical relations for characterizing K and M dwarf planet hosts,” Astron. J. 149, 166 (2015).

    Article  ADS  Google Scholar 

  30. W. Hayek, D. Sing, F Pont, and M. Asplund, “Limb darkening laws for two exoplanet host stars derived from 3D stellar model atmospheres. Comparison with 1D models and HST light curve observations,” Astron. Astrophys. 539, A102 (2012).

    Article  ADS  Google Scholar 

  31. J. Hough, “Polarimetry: A powerful diagnostic tool in astronomy,” Astron. Geophys. 47, 3.31–3.35 (2006).

    Article  Google Scholar 

  32. J. H. Hough, P. W. Lucas, J. A. Bailey, et al., “PlanetPol: A very high sensitivity polarimeter,” Publ. Astron. Soc. Pac. 118, 1302–1318 (2006).

    Article  ADS  Google Scholar 

  33. D. Huber, V. Silva Aguirre, J. M. Matthews, et al., “Revised stellar properties of Kepler targets for the quarter 1-16 transit detection run,” Astrophys. J., Suppl. Ser. 211, 2 (2014).

    Article  ADS  Google Scholar 

  34. J. C. Kemp, G. D. Henson, C. T. Steiner, and E. R. Powell, “The optical polarization of the Sun measured at a sensitivity of parts in ten million,” Nature 326, 270–273 (1987).

    Article  ADS  Google Scholar 

  35. N. M. Kostogryz and S. V. Berdyugina, “Center-to-limb polarization in continuum spectra of F, G, K stars,” Astron. Astrophys. 575, A89–A97 (2015).

    Article  ADS  Google Scholar 

  36. N. M. Kostogryz, T. M. Yakobchuk, and S. V. Berdyugina, “Polarization in exoplanetary systems caused by transits, grazing transits, and starspots,” Astrophys. J. 806, 97 (2015).

    Article  ADS  Google Scholar 

  37. N. M. Kostogryz, T. M. Yakobchuk, O. V. Morozhenko, and A. P. Vid’machenko, “Polarimetric study of transiting extrasolar planets,” Mon. Not. R. Astron. Soc. 415, 695–700 (2011).

    Article  ADS  Google Scholar 

  38. R. L. Kurucz, ATLAS9 Stellar Atmospheres Programs and 2 km/s Grid, Kurucz CD-ROM No. 13 (Smithson. Astrophys. Obs., Cambridge, MA, 1993).

    Google Scholar 

  39. K. R. Lang, Astrophysical Formulae (Springer-Verlag, Berlin, 1974), Ch. 9.

    Book  Google Scholar 

  40. J. Lillo-Box, D. Barrado, A. Moya, et al., “Kepler-91b: a planet at the end of its life. Planet and giant host star properties via light-curve variations,” Astron. Astrophys. 562, A109 (2014).

    Article  Google Scholar 

  41. P. W. Lucas, J. H. Hough, J. A. Bailey, et al., “Planetpol polarimetry of the exoplanet systems 55 Cnc and t Boo,” Mon. Not. R. Astron. Soc. 393, 229–244 (2009).

    Article  ADS  Google Scholar 

  42. D. Mihalas, Stellar Atmospheres, 2nd ed. (W. H. Freeman, San Francisco, 1978).

    Google Scholar 

  43. E. A. Milne, in Handbuch der Astrophysik, Ed. by G. Eberhard, A. Konlschüüter, and H. Ludendorff (Springer- Verlag, Berlin, 1930), Vol. 3, Part 1, p. 145.

  44. T. V. Mishenina, M. Pignatari, S. A. Korotin, et al., “Abundances of neutron-capture elements in stars of the Galactic disk substructures,” Astron. Astrophys. 552, A128 (2013).

    Article  Google Scholar 

  45. M. H. Pinsonneault, D. An, J. Molenda-Zakowicz, et al., “A revised effective temperature scale for the Kepler input catalog,” Astrophys. J., Suppl. Ser. 199, 30 (2012).

    Article  ADS  Google Scholar 

  46. I. Ramirez, J. R. Fish, and D. L. Lambert, Allende Prieto C. “Lithium abundances in nearby FGK dwarf and subgiant stars: Internal destruction, galactic chemical evolution, and exoplanets,” Astrophys. J. 756, 46 (2012).

    Google Scholar 

  47. J. F. Rowe, J. L. Coughlin, V. Antoci, et al., “Planetary candidates observed by Kepler. V. Planet sample from Q1–Q12 (36 months),” Astrophys. J., Suppl. Ser. 217, 16 (2015).

    Article  ADS  Google Scholar 

  48. N. C. Santos, S. G. Sousa, A. Mortier, et al., “SWEET-Cat: A catalogue of parameters for stars with exoplanets. I. New atmospheric parameters and masses for 48 stars with planets,” Astron. Astrophys. 556, A150 (2013).

    Article  Google Scholar 

  49. H. M. Schmid, D. Gisler, F. Joos, et al., “ZIMPOL/CHEOPS: A polarimetric imager for the direct detection of extra-solar planets,” in Proc. Astronomical Polarimetry: Current Status and Future Directions in Waikoloa, HI, Mar. 15–19, 2004, Ed. by A. Adamson, C. Aspin, C. J. Davis, and T. Fujiyoshi (Astron. Soc. Pac., 2005), in Ser.: ASP Conference Series, Vol. 343, pp. 89–91.

    Google Scholar 

  50. S. Seager, B. A. Whitney, and D. D. Sasselov, “Photometric light curves and polarization of close-in extrasolar giant planets,” Astrophys. J. 540, 504–520 (2000).

    Article  ADS  Google Scholar 

  51. N. G. Shchukina, K. V. Frantseva, and J. Trujillo Bueno, “The continuum polarization of stars with transiting exoplanetary systems,” Presented at WG1 Meeting: Polarimetry of Planetary Systems (COST Action MP1104 — Polarisation as a Tool to Study the Solar System and Beyond), Florence, Italy, Sept. 23–27, 2013. http://www.polarisation.eu/index.php/meetings/previous-meetings/10-meetings/102-polarimetry-planetary-systems.

    Google Scholar 

  52. N. G. Shchukina, K. V. Frantseva, and J. Trujillo Bueno, “Continuum polarization of stars as a result of occultation by transiting exoplanets,” in Proc. 21th Young Scientists’ Conf. on Astronomy and Space Physics, Kyiv, Ukraine, Apr. 28–May 3, 2014 (Kyiv. Nats. Univ. im. Tarasa Shevchenka, Kyiv, 2014), p. 12. http://ysc.kiev.ua.

    Google Scholar 

  53. N. G. Shchukina, K. V. Frantseva, and J. Trujillo Bueno, “Continuum polarization of stars as a result of occultation by transiting exoplanets,” Presented at WG2 Meeting: Theory and Modeling of Polarisation in Astrophysics (COST Action MP1104 — Polarisation as a Tool to Study the Solar System and Beyond), Prague, Czech, May 5–8, 2014. http://www.asu.cas.cz/~wg2prague/talks.html.

    Google Scholar 

  54. D. K. Sing, “Stellar limb-darkening coefficients for CoRot and Kepler,” Astron. Astrophys. 510, A21 (2010).

    Article  ADS  Google Scholar 

  55. D. K. Sing, J-M. Désert, J. J. Fortney, et al., “Gran Telescopio Canarias OSIRIS transiting exoplanet atmospheric survey: Detection of potassium in XO-2b from narrowband spectrophotometry,” Astron. Astrophys. 527, A73 (2011).

    Article  Google Scholar 

  56. D. K. Sing, J-M. Désert, A. Lecavelier des Etangs, et al., “Transit spectrophotometry of the exoplanet HD 189733b. I. Searching for water but finding haze with HST NICMOS,” Astron. Astrophys. 505, 891–899 (2009).

    Article  ADS  Google Scholar 

  57. S. G. Sousa, N. C. Santos, G. Israelian, et al., “Spectroscopic parameters for a sample of metal-rich solar-type stars,” Astron. Astrophys. 458, 873–880 (2006).

    Article  ADS  Google Scholar 

  58. D. M. Stam, J. W. Hovenier, L. B. F. M. Waters, “Using polarimetry to detect and characterize Jupiter-like extrasolar planets,” Astron. Astrophys. 428, 663–672 (2004).

    Article  ADS  Google Scholar 

  59. J. O. Stenflo, C. U. Keller, and A. Gandorfer, “Anomalous polarization effects due to coherent scattering on the Sun,” Astron. Astrophys. 355, 789–803 (2000).

    ADS  Google Scholar 

  60. G. Torres, D. A. Fischer, A. Sozzetti, et al., “Improved spectroscopic parameters for transiting planet hosts,” Astrophys. J. 757, 161 (2012).

    Article  ADS  Google Scholar 

  61. J. Trujillo Bueno and R. Manso Sainz, “Iterative methods for the non-LTE transfer of polarized radiation: Resonance line polarization in one-dimensional atmospheres,” Astrophys. J. 516, 436–450 (1999).

    Article  ADS  Google Scholar 

  62. J. Trujillo Bueno and N. G. Shchukina, “Three-dimensional radiative transfer modeling of the polarization of the Sun’s continuous spectrum,” Astrophys. J. 694, 1364–1378 (2009).

    Article  ADS  Google Scholar 

  63. S. J. Wiktorowicz, “Nondetection of polarized, scattered light from the HD 189733b hot Jupiter,” Astrophys. J. 696, 1116–1124 (2009).

    Article  ADS  Google Scholar 

  64. S. J. Wiktorowicz and K. A. Matthews, “A high-precision optical polarimeter to measure inclinations of highmass X-ray binaries,” Publ. Astron. Soc. Pac. 120, 1282–1297 (2008).

    Article  ADS  Google Scholar 

  65. P. A. Wilson, K. D. Colón, D. K. Sing, et al., “A search for methane in the atmosphere of GJ 1214b via GTC narrow-band transmission spectrophotometry,” Mon. Not. R. Astron. Soc. 438, 2395–2405 (2014).

    Article  ADS  Google Scholar 

  66. N. J. Wright, J. J. Drake, E. E. Mamajek, and G. W. Henry, “The stellar-activity-rotation relationship and the evolution of stellar dynamos,” Astrophys. J. 743, 48 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. G. Shchukina.

Additional information

Original Russian Text © N.G. Shchukina, J. Trujillo Bueno, I.E. Vasilyeva, K.V. Frantseva, 2017, published in Kinematika i Fizika Nebesnykh Tel, 2017, Vol. 33, No. 4, pp. 29–50.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shchukina, N.G., Bueno, J.T., Vasilyeva, I.E. et al. Center-to-limb variation of the continuum intensity and linear polarization of stars with transiting exoplanets. Kinemat. Phys. Celest. Bodies 33, 166–179 (2017). https://doi.org/10.3103/S0884591317040043

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0884591317040043

Navigation