Skip to main content
Log in

Effect of small-scale bernstein turbulence on low-frequency plasma waves in the preflare solar chromosphere

  • Solar Physics
  • Published:
Kinematics and Physics of Celestial Bodies Aims and scope Submit manuscript

Abstract

The studied region is a part of the current circuit of a magnetic loop in a solar active region in the altitude range of 1400–2500 km above the photosphere. At the earliest stage of development of a flare process, the magnetic field of the loop was assumed to be stationary and uniform in the interval corresponding to weak fields (the so-called deca-hectogauss fields). The conditions for emergence and development of instability of the second harmonic of Bernstein modes in this previously unexamined region were determined. This instability (and low-frequency instabilities emerging later) was assumed to be caused by the sub-Dreicer electric field of the loop, while pair Coulomb collisions were considered to be the major factor hindering its development. The obtained extremely low instability thresholds point to the possibility of subsequent emergence of low-frequency instabilities (and plasma waves corresponding to them) with much higher threshold values against the background of saturated Bernstein turbulence. The frequency of electron scattering by turbulence pulsations in this scenario normally exceeds the frequency of pair Coulomb (primarily ion–electron) collisions. Both the quasistatic sub-Dreicer field in the loop and the weak spatial inhomogeneity of plasma temperature and density were taken into account in the process of derivation and analysis of the dispersion relation for low-frequency waves. It was demonstrated that the solutions of the obtained dispersion relation in the cases of prevalent pair Coulomb collisions and dominant electron momentum losses at pulsations of saturated Bernstein turbulence are morphologically similar and differ only in the boundary values of perturbation parameters. In both cases, these solutions correspond to the two wave families, namely, kinetic Alfven waves and kinetic ion acoustic waves. These waves have their own electric fields and may play the important role in the process of preflare acceleration of energetic electrons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. F. Aleksandrov, L. S. Bogdankevich, and A. A. Rukhadze, Principles of Plasma Electrodynamics (Vysshaya Shkola, Moscow, 1989) [in Russian].

    Google Scholar 

  2. H. Bateman, MHD Instabilities (MIT Press, Cambridge, 1978; Energoizdat, Moscow, 1982).

    Google Scholar 

  3. A. A. Galeev, D. G. Lominadze, A. D. Pataraya, et al., “Anomalous plasma resistance due to instability at cyclotron harmonics,” JETP Lett. 15, 294–296 (1972).

    ADS  Google Scholar 

  4. A. A. Galeev and R. Sagdeev, “Nonlinear plasma theory,” in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Energoatomizdat, Moscow, 1973; Consultants Bureau, New York, 1979), Vol. 7.

    Google Scholar 

  5. S. I. Gopasyuk, “Structure and dynamics of the magnetic field in active regions on the Sun,” Itogi Nauki Tekh., Ser.: Astron. 34, 7–77 (1987).

    ADS  Google Scholar 

  6. C. de Jager, Structure and Dynamics of the Solar Atmosphere (Springer-Verlag, Berlin, 1959; Inostrannaya Literatura, Moscow, 1962).

    Google Scholar 

  7. A. G. Zagorodnii and O. K. Cheremnykh, Introduction to Plasma Physics (Naukova Dumka, Kyiv, 2014) [in Russian].

    Google Scholar 

  8. V. V. Zaitsev, A. V. Stepanov, and Yu. T. Tsap, “On the problems of physics of solar and stellar flares,” Kinematika Fiz. Nebesnykh Tel 10 (6), 3–31 (1994).

    ADS  Google Scholar 

  9. B. B. Kadomtsev, Collective Phenomena in Plasmas (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  10. B. B. Kadomtsev and O. P. Pogutse, “Turbulence in toroidal systems,” in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Energoatomizdat, Moscow, 1967; Springer-Verlag, New York, 1995), Vol. 5, pp. 249–400.

    Google Scholar 

  11. A. N. Krishtal’, “Low-frequency instabilities of plasma waves in a magnetized collisional plasma with longitudinal electric field and density inhomogeneity,” Radiofiz. Radioastron. 8 (1), 5–20 (2003).

    MathSciNet  Google Scholar 

  12. A. N. Kryshtal, A. D. Voitsekhovska, S. V. Gerasimenko, and M. V. Sidorenko, “On the possibility of the development of longitudinal wave instabilities on the background of the small-scale Bernstein turbulence in preflare chromosphere of a solar active region,” Kinematics Phys. Celestial Bodies 30, 234–243 (2014).

    Article  ADS  Google Scholar 

  13. A. N. Krishtal’, and S. V. Gerasimenko, “Dispersion of the waves in magnetoactive plasma with sub-Dreicer electric field and strong density inhomogeneity in arch structures,” Kinematika Fiz. Nebesnykh Tel 18, 258–272 (2002).

    ADS  Google Scholar 

  14. A. N. Kryshtal, S. V. Gerasimenko, A. D. Voitsekhovska, and O. K. Cheremnykh, “One type of three-wave interaction of low-frequency waves in magnetoactive plasma of the solar atmosphere,” Kinematics Phys. Celestial Bodies 30, 147–154 (2014).

    Article  ADS  Google Scholar 

  15. A. B. Mikhailovskii, “Oscillations of an inhomogenous plasma,” in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Energoatomizdat, Moscow, 1963; Springer-Verlag, New York, 1967), Vol. 3, pp. 159–227.

    Chapter  Google Scholar 

  16. A. B. Mikhailovskii, Theory of Plasma Instabilities, Vol. 2: Instabilities of an Inhomogeneous Plasma (Atomizdat, Moscow, 1975; Springer-Verlag, New York, 2013).

    Google Scholar 

  17. A. P. Mishina and I. V. Proskuryakov, Higher Algebra: Linear Algebra, Polynomials, General Algebra (GIFML, Moscow, 1962; Pergamon, Oxford, 1965).

    MATH  Google Scholar 

  18. Basic Plasma Physics, Ed. by A. A. Galeev and R. Sudan (Energoatomizdat, Moscow, 1983), Vol. 1 [in Russian].

  19. Basic Plasma Physics, Ed. by A. A. Galeev and R. Sudan (Energoatomizdat, Moscow, 1984), Vol. 2 [in Russian].

  20. A. I. Podgornyi and I. M. Podgornyi, “Numerical simulation of a solar flare produced by the emergence of new magnetic flux,” Astron. Rep. 45, 60–66 (2001).

    Article  ADS  Google Scholar 

  21. E. R. Priest, Solar Magnetohydrodynamics (Springer-Verlag, Dordrecht, 1982; Mir, Moscow, 1985).

    Google Scholar 

  22. B. P. Filippov, Eruptive Processes on the Sun (Fizmatlit, Moscow, 2007) [in Russian].

    Google Scholar 

  23. F. Chen, Introduction to Plasma Physics (Springer, New York, 1974; Mir, Moscow, 1987).

    Google Scholar 

  24. G. P. Chernov, V. V. Fomichev, and R. A. Sych, “New results of studies of zebra structure in solar radio emission,” in Proc. 11th Conf. Plasma Physics in the Solar System, Moscow, Feb. 15–19, 2016 (Inst. Kosm. Issl. Ross. Akad. Nauk., Moscow, 2016), p. 24.

    Google Scholar 

  25. A. N. Shabalin and Yu. E. Charikov, “Generation of hard x-ray radiation by accelerated electrons in the turbulent plasma of solar flares,” in Proc. 11th Conf. Plasma Physics in the Solar System, Moscow, Feb. 15–19, 2016 (Inst. Kosm. Issl. Ross. Akad. Nauk., Moscow, 2016), p. 25.

    Google Scholar 

  26. T. Anan, R. Casini, and K. Ichimoto, “Diagnosis of magnetic and electric fields of chromospheric jets through spectropolarimetric observations of H I Paschen lines,” Astrophys. J. 786, 94 (2014).

    Article  ADS  Google Scholar 

  27. M. J. Aschwanden, “An evaluation of coronal heating models for active regions based on Yohkoh, SOHO, and TRACE observations,” Astrophys. J. 560, 1035–1043 (2001).

    Article  ADS  Google Scholar 

  28. M. J. Aschwanden, Physics of the Solar Corona. An Introduction with Problems and Solutions, 2nd ed. (Praxis, Chichester, 2005).

    Google Scholar 

  29. M. L. Bendict, A. Shanmugaraju, and B. Vrsnak, “Investigation of X-class flare-associated coronal mass ejections with and without DH Type II radio bursts,” Sol. Phys. 290, 3365–3377 (2015).

    Article  ADS  Google Scholar 

  30. S. G. Benka, “DC-electric fields in solar flares; Theory meets observation,” in Proc. Kofu Symp.: New Look at the Sun with Emphasis on Advanced Observations of Corona Dynamics and Flares, Kofu, Sept. 6–10, 1993, Ed. by S. Enome and T. Hirayama, (Nobeyama Radio Observatory, Minamisaku, 1994), pp. 225–229.

    Google Scholar 

  31. R. Casini and E. Landi Degl’Innocenti, “The polarized spectrum of hydrogen in the presence of electric and magnetic fields,” Astron. Astrophys. 276, 289–302 (1993).

    ADS  Google Scholar 

  32. J. M. Fontenla, E. H. Avrett, and R. Loeser, “Energy balance in the solar transition region. III — Helium emission in hydrostatic, constant-abundance models with diffusion,” Astrophys. J. 406, 319–345 (1993).

    Article  ADS  Google Scholar 

  33. P. Foukal, and S. Hinata, “Electric fields in the solar atmosphere: A review,” Sol. Phys. 132, 307–334 (1991).

    Article  ADS  Google Scholar 

  34. A. A. Galeev, D. G. Lominadze, A. D. Pataraya, et al., “Anomalous plasma resistance due to instability at cyclotron harmonics,” JETP Lett. 15, 294–296 (1972).

    ADS  Google Scholar 

  35. L. K. Harra, S. A. Matthews, and J. L. Culhane, “Nonthermal velocity evolution in the precursor phase of a solar flare,” Astrophys. J. Lett. 549, L245–L248 (2001).

    Article  ADS  Google Scholar 

  36. A. Hasegawa, and L. Chen, “Parametric decay of "kinetic Alfven wave” and its application to plasma heating,” Phys. Rev. Lett. 36, 1362–1365 (1976).

    Article  ADS  Google Scholar 

  37. H. S. Hudson, “Chromospheric Flares,” in The Physics of Chromospheric Plasmas: Proc. Coimbra Solar Physics Meeting, Coimbra, Portugal, Oct. 9–13, 2006, Ed. by P. Heinzel, I. Dorotovic, and R. J. Rutten. (Astron. Soc. Pac.,2007), in Ser.: ASP Conference Series, Vol. 368, pp. 365–386 (2007).

    Google Scholar 

  38. L. K. Kashapova, N. S. Meshalkina, and M. S. Kisil, “Detection of acceleration processes during the initial phase of the 12 June 2010 flare,” Sol. Phys. 280, 525–535 (2012).

    Article  ADS  Google Scholar 

  39. A. N. Kryshtal, “Low-frequency wave instabilities in a plasma with a quasistatic electric field and weak spatial inhomogeneity,” J. Plasma Phys. 68, 137–148 (2002).

    Article  ADS  Google Scholar 

  40. A. N. Kryshtal, “Low-frequency wave instabilities in magnetoactive plasma with spatial inhomogeneity of temperature,” J. Plasma Phys. 71, 729–745 (2005).

    Article  ADS  Google Scholar 

  41. A. N. Kryshtal, V. Fedun, S. V. Gerasimenko, and A. D. Voitsekhovska, “Oblique Bernstein mode generation near the upper-hybrid frequency in solar pre-flare plasmas,” Sol. Phys. 290, 3331–3341 (2015).

    Article  ADS  Google Scholar 

  42. A. N. Kryshtal and S. V. Gerasimenko, “Kinetic Alfven waves in preflare plasma,” Astron. Nachr. 326, 52–60 (2005).

    Article  ADS  MATH  Google Scholar 

  43. A. N. Kryshtal, S. V. Gerasimenko, and A. D. Voitsekhovska, “"Oblique” Bernstein modes in solar preflare plasma: Generation of second harmonics,” Adv. Space Res. 49, 791–796 (2012).

    Article  ADS  Google Scholar 

  44. A. Kryshtal, S. Gerasimenko, and A. Voitsekhovska, “Small-scale Langmuir wave instability in preflare chromosphere of solar active region,” Astrophys. Space Sci. 349, 637–646 (2014).

    Article  ADS  Google Scholar 

  45. A. Kryshtal, S. Gerasimenko, A. Voitsekhovska, and V. Fedun, “The ion-acoustic instability in the pre-flare plasma near the loop footpoints at solar active regions,” Ann. Geophys. 31, 2193–2200 (2013).

    Article  ADS  Google Scholar 

  46. M. E. Machado, E. H. Avrett, J. E. Vernazza, and R. W. Noyes, “Semiempirical models of chromospheric flare regions,” Astrophys. J. 242, 336–351 (1980).

    Article  ADS  Google Scholar 

  47. I. A. Miller, P. I. Cargil, A. G. Emslie, et al., “Critical issues for understanding particle acceleration in impulsive solar flares,” J. Geophys. Res.: Space Phys. 102, 14631–14659 (1997).

    Article  ADS  Google Scholar 

  48. E. I. Schmahl, D. K. Webb, B. Woodgate, et al., “Coronal manifestations of preflare activity,” in Energetic Phenomena on the Sun, Ed. by M. Kundu and B. Woodgate (NASA, Washington, DC, 1986), pp. 1–48–1-79.

    Google Scholar 

  49. S. K. Solanki, “Small-scale solar magnetic fields: An overview,” Space Sci. Rev. 63, 1–188 (1993).

    Article  ADS  Google Scholar 

  50. J. E. Vernazza, E. H. Avrett, and R. Loeser, “Structure of the solar chromosphere. III. Models of the EUV brightness components of the quiet-sun,” Astrophys. J., Suppl. Ser. 45, 635–725 (1981).

    Article  ADS  Google Scholar 

  51. A. J. Willes and P. A. Robinson, “Electron-cyclotron maser theory for noninteger ratio emission frequencies in solar microwave spike bursts,” Astrophys. J. 467, 465–472 (1996).

    Article  ADS  Google Scholar 

  52. V. V. Zharkova, L. K. Kashapova, S. N. Chornogor, and O. V. Andrienko, “The effect of energetic particle beams on the chromospheric emission of the 2004 July 25 flare,” Mon. Not. R. Astron. Soc. 411, 1562–1574 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Kryshtal.

Additional information

Original Russian Text © A.N. Kryshtal, A.D. Voitsekhovska, S.V. Gerasimenko, O.K. Cheremnykh, 2017, published in Kinematika i Fizika Nebesnykh Tel, 2017, Vol. 33, No. 4, pp. 3–28.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kryshtal, A.N., Voitsekhovska, A.D., Gerasimenko, S.V. et al. Effect of small-scale bernstein turbulence on low-frequency plasma waves in the preflare solar chromosphere. Kinemat. Phys. Celest. Bodies 33, 149–165 (2017). https://doi.org/10.3103/S0884591317040031

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0884591317040031

Navigation