Kinematics and Physics of Celestial Bodies

, Volume 33, Issue 2, pp 88–93 | Cite as

On the probable change of the radius and nature of aerosol particles in the deep layers of Jupiter’s atmosphere

Dynamics and Physics of Bodies of the Solar System
  • 19 Downloads

Abstract

When analyzing the pressure dependences of the aerosol volume scattering coefficient calculated from the measurement data on the geometric albedo of Jupiter obtained in 1993 in the methane absorption bands at 619, 727, and 842 nm, the signs of probable changes in the parameters of aerosol particles in the deep atmospheric layers were detected and the first estimates of the magnitude of these changes were obtained. It has been found that, in the pressure interval from 4 to 14 bar, the effective radius of particles may increase twofold and more (larger than 0.73 μm) and the real part of the refractive index may grow by 10% (from 1.44 and higher) relative to the values of these parameters in the upper atmosphere. If we take into account these changes, we find no signs of aerosol deep in the atmosphere of Jupiter.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. S. Dement’ev and A. V. Morozhenko, “Vertical inhomogeneity of the atmospheres of Uranus and Neptune,” Astron. Vestn. 24, 127–134 (1990).ADSGoogle Scholar
  2. 2.
    M. S. Dement’ev and A. V. Morozhenko, “Zones and belts of the Jovian disk — Differences in the vertical structure of cloud layers,” Astron. Vestn. 24, 275–287 (1990).ADSGoogle Scholar
  3. 3.
    A. V. Morozhenko, “Results of polarization studies of Jupiter,” Astrom. Astrofiz., No. 30, 47–54 (1976).ADSGoogle Scholar
  4. 4.
    A. V. Morozhenko, “Jovian cloud stratification,” Sov. Astron. Lett. 10, 323–325 (1984).ADSGoogle Scholar
  5. 5.
    A. V. Morozhenko, “Vertical structure of the latitude cloud bands of Jupiter,” Sol. Syst. Res. 19, 44–52 (1985).Google Scholar
  6. 6.
    A. V. Morozhenko, “Problems of the vertical structure of cloud layers in the atmospheres of giant planets,” Kinematika Fiz. Nebesnykh Tel 9, 3–26 (1993).MathSciNetGoogle Scholar
  7. 7.
    A. V. Morozhenko, “Probable limits to the particle size and mixing ratio of aerosol and methane at the levels of formation of the methane absorption bands at λλ 727, 619, 543, and 441 nm in the atmosphere of Neptune,” Kinematika Fiz. Nebesnykh Tel 15, 110–122 (1999).ADSGoogle Scholar
  8. 8.
    A. V. Morozhenko, “Difference in the vertical structure of cloud layers of giant planets,” Kinematika Fiz. Nebesnykh Tel 17, 261–278 (2001).ADSGoogle Scholar
  9. 9.
    A. V. Morozhenko, A. S. Ovsak, A. P. Vid’machenko, V. G. Teifel, and P. G. Lysenko, “Imaginary part of the refractive index of aerosol in latitudinal belts of Jupiter’s disc,” Kinematics Phys. Celestial Bodies 32, 30–37 (2016).ADSCrossRefGoogle Scholar
  10. 10.
    A. V. Morozhenko, A. S. Ovsak, and P. P. Korsun, “The vertical structure of Jupiter’s cloud layer before and after the impact by comet Shoemaker–Levy 9,” Kinematika Fiz. Nebesnykh Tel 11, 3–20 (1995).Google Scholar
  11. 11.
    A. V. Morozhenko, Methods and Results of Remote Probing of Planetary Atmospheres (Naukova Dumka, Kyiv, 2004) [in Ukrainian].Google Scholar
  12. 12.
    A. S. Ovsak, V. G. Teifel’, and P. G. Lysenko, “Vertical structure of the volume scattering coefficient of aerosol in latitude belts of Jupiter’s disk,” Kinematics Phys. Celestial Bodies 32, 181–188 (2016).ADSCrossRefGoogle Scholar
  13. 13.
    Seiff A., Lester P. “Final report. Work on planetary atmospheres and planetary atmosphere probes,” Grant No. NCC 2-471 (1998). http://www.archive.org/details/nasa_techdoc_19990019508.Google Scholar
  14. 14.
    S. K. Atreya, “Composition, clouds, and origin of Jupiter’s atmosphere — A case for deep multiprobes into giant planets,” in Proc. Int. Workshop on Planetary Probe Atmospheric Entry and Descent Trajectory Analysis and Science, Lisbon, Portugal, October 6–9, 2003, Ed. by A. Wilson (ESA, Noordwijk, 2004), pp. 57–62.Google Scholar
  15. 15.
    Z. M. Dlugach and M. I. Mischenko, “The effect of aerosol shape in retrieving optical properties of cloud particles in the planetary atmospheres from the photopolarimetric data. Jupiter,” Sol. Syst. Res. 39, 102–111 (2005).ADSCrossRefGoogle Scholar
  16. 16.
    Z. M. Dlugach and M. I. Mischenko, “Photopolarimetry of planetary atmospheres: what observational data are essential for a unique retrieval of aerosol microphysics?,” Mon. Not. R. Astron. Soc. 384, 64–70 (2008).ADSCrossRefGoogle Scholar
  17. 17.
    J. E. Hansen, “Circular polarization of sunlight reflected by clouds,” J. Atmos. Sci. 28, 1515–1516 (1971).ADSCrossRefGoogle Scholar
  18. 18.
    E. Karkoschka, “Spectrophotometry of the Jovian planets and Titan at 300- to 1000-nm wavelength: The methane spectrum,” Icarus 111, 967–982 (1994).CrossRefGoogle Scholar
  19. 19.
    Y. Kawata and J. E. Hansen, “Circular polarization of sunlight reflected by Jupiter,” in Jupiter: Studies of the Interior, Atmosphere, Magneteosphere, and Satellites, Ed. by T. Gehrels (Univ. of Arizona Press, Tucson, AZ, 1976), pp. 516–530.Google Scholar
  20. 20.
    J. S. Lewis, “The clouds of Jupiter and the NH3–H2O and NH3–H2S systems,” Icarus 10, 365–378 (1969).ADSCrossRefGoogle Scholar
  21. 21.
    M. I. Mishchenko, “Physical properties of the upper tropospheric aerosols in the equatorial region of Jupiter,” Icarus 84, 296–304 (1990).ADSCrossRefGoogle Scholar
  22. 22.
    A. V. Morozhenko and E. G. Yanovitskii, “The optical properties of Venus and the Jovian planets I. The atmosphere of Jupiter according to polarimetric observations,” Icarus 18, 583–592 (1973).ADSCrossRefGoogle Scholar
  23. 23.
    A. V. Morozhenko and A. S. Ovsak, “On the possibility of separation of aerosol and methane absorption in the long-wavelength spectral range for giant planets,” Kinematics Phys. Celestial Bodies 31, 225–231 (2015).ADSCrossRefGoogle Scholar
  24. 24.
    H. B. Niemann, S. K. Atrea, G. R. Carignan, et al., “The composition of the Jovian atmosphere as determined by the Galileo probe mass spectrometer,” J. Geophys. Res.: Planets 103, 22831–22845 (1998).ADSCrossRefGoogle Scholar
  25. 25.
    A. S. Ovsak, “Upgraded technique to analyze the vertical structure of the aerosol component of the atmospheres of giant planets,” Kinematics Phys. Celestial Bodies 29, 291–300 (2013).ADSCrossRefGoogle Scholar
  26. 26.
    A. S. Ovsak, “Changes in the characteristics of the upper layers of the Jovian atmosphere from the data on the integral observations of the planetary disk,” Kinematics Phys. Celestial Bodies 31, 25–33 (2015).ADSCrossRefGoogle Scholar
  27. 27.
    A. S. Ovsak, “Variations of the volume scattering coefficient of aerosol in the Jovian atmosphere from observations of the planetary disk,” Kinematics Phys. Celestial Bodies 31, 197–204 (2015).ADSCrossRefGoogle Scholar
  28. 28.
    A. S. Ovsak, “Vertical structure of cloud layers in the atmospheres of giant planets. I. On the influence of variations of some atmospheric parameters on the vertical structure characteristics,” Sol. Syst. Res. 49, 43–50 (2015).ADSCrossRefGoogle Scholar
  29. 29.
    B. Ragent, D. S. Colburn, K. A. Rages, et al., “The clouds of Jupiter. Results of the Galileo Jupiter missions probe nephelometer experiment,” J. Geophys. Res.: Planets 103, 22891–22909 (1998).ADSCrossRefGoogle Scholar
  30. 30.
    P. H. Smith, “The vertical structure of the Jovian atmosphere,” Icarus 65, 264–279 (1986).ADSCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  1. 1.Main Astronomical ObservatoryNational Academy of Sciences of UkraineKyivUkraine

Personalised recommendations