Skip to main content

Modeling of H II region radiation surrounding the starburst knot taking into account the evolution of structures formed by the superwind

Abstract

The method for the multicomponent photoionization modeling of the H II region radiation surrounding the starburst knot is presented. The internal structure of the H II region has been determined using the evolutionary model of the superwind bubble from the starburst center. Models of Chevalier and Clegg (1985) and Weaver et al. (1977) have been used to determine the radial distribution of the gas density, the velocity of gas layers, and the temperature in the region of the superwind free expansion and in the cavity, respectively. The chemical content of the internal components of the bubble has been set by the results of the modeling of the evolutionary population synthesis. External components of our models describe a high-density, thin layer of gas formed by the shock wave of stellar superwind from the surrounding gas and a typical H II region, respectively. Input model parameters have been taken from the precalculated evolutionary starburst models based on three types of evolutionary tracks. Evolutionary grids of multicomponent low-metallicity models are calculated. A comparative analysis of the results of their calculation with the observational data has been carried out.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    N. G. Bochkarev and S. A. Zhekov, “X-ray emission from certain nebulae formed by stellar wind,” Astron. Zh. 67, 274–292 (1990).

    ADS  Google Scholar 

  2. 2.

    I. O. Koshmak and B. Ya. Melekh, “Modeling the emission of an H II region containing a bubble-like structure,” Kinematics Phys. Celestial Bodies 29, 257–268 (2013).

    ADS  Article  Google Scholar 

  3. 3.

    I. O. Koshmak and B. Ya. Melekh, “The role of dust in modelling the H II region emission with bubble-like structure inside,” Zh. Fiz. Dosl. 17, 4901 (2013).

    Google Scholar 

  4. 4.

    I. O. Koshmak and B. Ya. Melekh, “Multicomponent simulation of emission of low-metallicity H II regions,” Kinematics Phys. Celestial Bodies 30, 70–84 (2014).

    ADS  Article  Google Scholar 

  5. 5.

    B. Ya. Melekh, I. O. Koshmak, and R. V. Kozel, “The influence of stellar wind bubbles on the radiation ionizing field in the nebular objects,” Zh. Fiz. Dosl. 15, 3901 (2011).

    Google Scholar 

  6. 6.

    B. Ya. Melekh, L. S. Pilyugin, and R. I. Korytko, “Relationship between intensities of strong emission lines in the spectra of H II regions and their chemical compositions,” Kinematics Phys. Celestial Bodies 28, 189–202 (2012).

    ADS  Article  Google Scholar 

  7. 7.

    J. Castor, R. McCray, and R. Weaver, “Interstellar bubbles,” Astrophys. J. 200, L107–L110 (1975).

    ADS  Article  Google Scholar 

  8. 8.

    R. A. Chevalier and A. W. Clegg, “Wind from a starburst nucleus,” Nature 317, 44–45 (1985).

    ADS  Article  Google Scholar 

  9. 9.

    J. E. Dyson and D. A. Williams, Physics of the Interstellar Medium (CRC, New York, 1997).

    Book  MATH  Google Scholar 

  10. 10.

    Ferland G.J. “Hazy, a brief introduction to Cloudy,” Univ. of Kentucky, Physics Department Internal Report No. 200 (2008). http://www.nublado.org.

    Google Scholar 

  11. 11.

    G. Ferland, L. Binette, M. Contini, et al., The Analysis of Emission Lines, Ed. by R. Williams and M. Livio, in Ser. Space Telescope Science Institute Symposium Series, Vol. 8 (Cambridge Univ. Press, Cambridge, 1995).

    Google Scholar 

  12. 12.

    Yu. I. Izotov and T. X. Thuan, “The primordial abundance of 4He revisited,” Astrophys. J. 500, 188–216 (1998).

    ADS  Article  Google Scholar 

  13. 13.

    Yu. I. Izotov, T. X. Thuan, and V. A. Lipovetsky, “The primordial helium abundance from a new sample of metal-deficient blue compact galaxies,” Astrophys. J. 435, 647–667 (1994).

    ADS  Article  Google Scholar 

  14. 14.

    Yu. I. Izotov, T. X. Thuan, and V. A. Lipovetsky, “The primordial helium abundance: Systematic effects and a new determination,” Astrophys. J., Suppl. Ser. 108, 1–39 (1997).

    ADS  Article  Google Scholar 

  15. 15.

    B.-C. Koo and C. F. McKee, “Dynamics of wind bubbles and superbubbles. I — Slow winds and fast winds. II — Analytic theory,” Astrophys. J. 388, 93–126 (1992).

    ADS  Article  Google Scholar 

  16. 16.

    R. V. Kozel and B. Ya. Melekh, “Photoionization modelling of H II region with stellar wind bubble inside,” in Proc. 16th Young Scientists’ Conf. on Astronomy and Space Physics (YSC’16), Kyiv, Ukraine, Apr. 27–May 2, 2009, Ed. by V. Ya. Choliy and G. Ivashchenko (Dep. Astron. Kosm. Fiz., Kyiv. Nats. Univ. im. T. Shevchenka, Kyiv, 2009), pp. 37–41.

    Google Scholar 

  17. 17.

    C. Leitherer, D. Schaerer, J. D. Goaldader, et al., “Starburst99: Synthesis models for galaxies with active star formation,” Astrophys. J., Suppl. Ser. 123, 3–40 (1999).

    ADS  Article  Google Scholar 

  18. 18.

    J. S. Mathis, W. Rumpl, and K. H. Nordsieck, “The size distribution of interstellar grains,” Astrophys. J. 217, 425–433 (1977).

    ADS  Article  Google Scholar 

  19. 19.

    B. Ya. Melekh, “Two-stages optimized photoionization modelling of H II region in blue compact galaxy SBS 0335-052,” Zh. Fiz. Dosl. 13, 3901 (2009).

    Google Scholar 

  20. 20.

    G. Mellema, “The interaction of stellar winds with their environment: Theory and modelling,” Astrophys. Space Sci. 260, 203–213 (1998).

    ADS  Article  MATH  Google Scholar 

  21. 21.

    Model Nebulae. Proc. of the Workshop Held at the Observatoire de Meudon, Meudon, France, July 8–19, 1985, Ed. by D. Péquignot (Obs. de Paris-Meudon, Meudon, 1986).

  22. 22.

    L. S. Pilyugin, E. K. Grebel, and L. Mattsson, “‘Counterpart’ method for abundance determinations in H II regions,” Mon. Not. R. Astron. Soc. 424, 2316–2329 (2012).

    ADS  Article  Google Scholar 

  23. 23.

    L. S. Pilyugin, E. K. Grebel, and A. Y. Kniazev, “The abundance properties of nearby late-type galaxies. I. The data,” Astrophys. J. 147, 131 (2014).

    ADS  Google Scholar 

  24. 24.

    L. S. Pilyugin, J. M. Vilchez, and T. X. Thuan, “New improved calibration relations for the determination of electron temperatures and oxygen and nitrogen abundances in H II regions,” Astrophys. J. 720, 1738–1751 (2010).

    ADS  Article  Google Scholar 

  25. 25.

    D. Schaerer and W. D. Vacca, “New models for Wolf–Rayet and O star populations in young starbursts,” Astrophys. J. 497, 618 (1998).

    ADS  Article  Google Scholar 

  26. 26.

    C. B. Tarter, PhD Thesis (Cornell Univ., Ithaca, NY, 1967).

    Google Scholar 

  27. 27.

    T. X. Thuan and Yu. I. Izotov, “High-ionization emission in metal-deficient blue compact dwarf galaxies,” Astrophys. J. 161, 240–270 (2005).

    ADS  Article  Google Scholar 

  28. 28.

    R. Weaver, R. McCray, J. Castor, et al., “Interstellar bubbles. II. Structure and evolution,” Astrophys. J. 218, 377–395 (1977).

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to I. O. Koshmak.

Additional information

Original Russian Text © I.O. Koshmak, B.Ya. Melekh, 2017, published in Kinematika i Fizika Nebesnykh Tel, 2017, Vol. 33, No. 2, pp. 3–23.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Koshmak, I.O., Melekh, B.Y. Modeling of H II region radiation surrounding the starburst knot taking into account the evolution of structures formed by the superwind. Kinemat. Phys. Celest. Bodies 33, 39–54 (2017). https://doi.org/10.3103/S0884591317020040

Download citation