Continuous absorption and depression in the solar spectrum at wavelengths from 650 to 820 nm

Abstract

Results of calculations of the cross-sections of the basic processes forming continuous absorption in the photospheres of solar-type stars in the visible and infrared spectral ranges are reported. (These processes are photoionization of H ions and excited hydrogen atoms, as well as absorption of photons by “free” electrons being in the partially ionized plasma of the photosphere.) The effective cross-section of hydrogen satisfying the observational data or the results of laboratory experiments was introduced, and its nonmonotonic behavior caused by photoionization of excited hydrogen atoms was ascertained in the spectral range of λ from 650 to 820 nm. For a plane-parallel model of the Sun, the continuous absorption coefficient κ c (λ|z) was calculated as a function of the wavelength and coordinate. Its spectral features caused by the effective cross-section structure in the above-mentioned spectral range were for the first time analyzed. The spectral dependence of the radiation intensity in the solar disk center in the continuous spectral range of λ from 600 to 900 nm was studied. The calculation results were compared to the currently available data of observations. It has been shown that the deviation of the observed radiation intensity from the Planck distribution (i.e., the depression) is caused by the processes of photoionization of the excited hydrogen atoms in the states with a principal quantum number n = 3. In the range of λ from 650 to 820 nm, the mean relative deviation is approximately 4%. It has been established that the magnitude of the depression effect significantly depends on the effective temperature of the photosphere of a solar-type star.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    L. H. Aller, Atoms, Stars and Nebulae (Blackiston, Philadelphia, 1943; Mir, Moscow, 1976).

    Google Scholar 

  2. 2.

    I. N. Atroshchenko, A. S. Gadun, S. I. Gopasyuk, et al., Variations in the Global Characteristics of the Sun, Ed. by E. A. Gurtovenko (Nauk. Dumka, Kiev, 1991) [in Russian].

  3. 3.

    K. A. Burlov-Vasil’ev, I. E. Vasil’eva, and Yu. B. Matveev, “New measurements of the absolute spectral energy distribution of solar radiation in the range= 650–1070 nm,” Kinematika Fiz. Nebesnykh Tel 12 (3), 75–91 (1996).

    Google Scholar 

  4. 4.

    M. V. Vavrukh and O. M. Stel’makh, “Photoionization cross-section of negative hydrogen ions,” Visn. L’viv. Univ., Ser. Fiz. 47, 3 (2012).

    Google Scholar 

  5. 5.

    M. V. Vavrukh and O. M. Stel’makh, “The cross-sections of the main processes that forms the continuous absorption coefficient in the photosphere of Sun-like stars,” Zh. Fiz. Dosl. 17, 4902 (2013).

    Google Scholar 

  6. 6.

    I. O. Vakarchuk, Theory of Stellar Spectra (L’viv Nats. Univ. Ivana Franka, L’viv, 2002) [in Ukrainian].

    Google Scholar 

  7. 7.

    O. M. Stel’makh, “The ionization-recombination equilibrium computation in stellar photospheres,” Visn. L’viv. Univ., Ser. Fiz. 49, 137–150 (2014).

    Google Scholar 

  8. 8.

    W. A. Harrison, Solid State Theory (McGraw-Hill, New York, 1970; Mir, Moscow, 1972).

    Google Scholar 

  9. 9.

    M. P. Ajmera and K. T. Chung, “Photodetachment of negative hydrogen ions,” Phys. Rev. A: At., Mol., Opt. Phys. 12, 475–479 (1975).

    ADS  Article  Google Scholar 

  10. 10.

    D. Bolsee, N. Pereira, W. Decuyper, et al., “Accurate determination of the TOA solar spectral NIR irradiance using a primary standard source and the Bouguer-Langley technique,” Sol. Phys. 289, 24–33 (2014).

    Article  Google Scholar 

  11. 11.

    J. T. Broad and W. P. Reinhardt, “One-and two-electron photoejection from H: A multichannel J-matrix calculation,” Phys. Rev. A: At., Mol., Opt. Phys. 14, 2159–2173 (1976).

    ADS  Article  Google Scholar 

  12. 12.

    K. A. Burlov-Vasiljev, E. A. Gurtovenko, and Yu. B. Matvejev, “New absolute measurements of the solar spectrum 310–685 nm,” Sol. Phys. 157, 51–73 (1995).

    ADS  Article  Google Scholar 

  13. 13.

    K. A. Burlov-Vasiljev, Yu. B. Matvejev, and I. E. Vasiljeva, “New measurements of the solar disk-center spectral intensity in the near IR range 645–1070 nm,” Sol. Phys. 177, 25–40 (1998).

    ADS  Article  Google Scholar 

  14. 14.

    S. Chandrasekhar and F. H. Breen, “On the continuous absorption coefficient of the negative hydrogen ion. III,” Astrophys. J. 104, 430–445 (1946).

    ADS  MathSciNet  Article  Google Scholar 

  15. 15.

    Y. A. Eltbaakh, M. H. Ruslan, M. A. Alhgoul, et al., “Measurement of total and spectral solar irradiance: Overview of existing research,” Renewable Sustainable Energy Rev. 15, 1403–1426 (2011).

    Article  Google Scholar 

  16. 16.

    M. Fligge, S. K. Solanki, J. M. Pap, et al., “Variations of solar spectral irradiance from near UV to the infrared–Measurements and results,” J. Atmos. Sol.-Terr. Phys. 63, 1479–1487 (2001).

    ADS  Article  Google Scholar 

  17. 17.

    J. M. Fontenla, E. Avrett, G. Thuillier, and J. Harder, “Semiempirical models of the solar atmosphere. I. The quiet and-active Sun photosphere at moderate resolution,” Astrophys. J. 639, 441–458 (2006).

    ADS  Article  Google Scholar 

  18. 18.

    J. M. Fontenla and W. Livingston, “High-resolution solar spectral irradiance from extreme ultraviolet to far infrared,” J. Geophys. Res.: Atmos. 116, D20108 (2011).

    ADS  Article  Google Scholar 

  19. 19.

    J. M. Fontenla, J. W. Harder, G. Rottman, et al., “The signature of solar activity in the infrared spectral irradiance,” Astrophys. J., Lett. 605, L85–L88 (2004).

    ADS  Article  Google Scholar 

  20. 20.

    J. A. Gaunt, “Continuous absorption,” Philos. Trans. R. Soc. London, A 229, 163–204 (1930).

    ADS  Article  MATH  Google Scholar 

  21. 21.

    S. Geltman, “The bound-free absorption coefficient of the hydrogen negative ion,” Astrophys. J. 136, 935–945 (1962).

    ADS  Article  Google Scholar 

  22. 22.

    W. Gordon, “Die Radialintegrale sin dim folgenden stets in atomaren Einheiten a angegeben,” Ann. Phys. (Berlin, Ger.) 2, 1031–1056 (1929).

    ADS  Article  Google Scholar 

  23. 23.

    C. Gueymard, “The Sun’s total and spectral irradiance for solar energy applications and solar radiation models,” Sol. Energy 76, 423–453 (2004).

    ADS  Article  Google Scholar 

  24. 24.

    C. A. Guyemard, “Reference solar spectra: Their evolution, standardization issues, and comparison to recent measurements,” Adv. Space Res. 37, 323–340 (2006).

    ADS  Article  Google Scholar 

  25. 25.

    D. Labs and H. Neckel, “The radiation of the solar photosphere from 2000 Å to 100 µm,” Z. Astrophys. 69, 1–73 (1968).

    ADS  Google Scholar 

  26. 26.

    D. Labs and H. Neckel, “Transformation of the absolute solar radiation data into the international practical temperature scale of 1968,” Sol. Phys. 15, 79–87 (1970).

    ADS  Article  Google Scholar 

  27. 27.

    D. Labs and H. Neckel, “Improved data of solar spectral irradiance from 0.33 to 1.25 microns,” Sol. Phys. 74, 213–249 (1981).

    Google Scholar 

  28. 28.

    E. Milne, “Radiative equilibrium: The relation between the spectral energy curve of a star and the law of darkening of the disc towards the limb, with special reference to the effects of scattering and the solar spectrum,” Philos. Trans. R. Soc. London, A 223, 201–255 (1923).

    ADS  Article  Google Scholar 

  29. 29.

    H. Neckel and D. Labs, “The solar radiation between 3300 and 12500 Å,” Sol. Phys. 90, 205–258 (1984).

    ADS  Article  Google Scholar 

  30. 30.

    A. Shapiro, W. Schmutz, M. Schoell, et al., “NLTE solar irradiance modeling with the COSI code,” Astron. Astrophys. 517, A48 (2010).

    ADS  Article  Google Scholar 

  31. 31.

    S. J. Smith and D. S. Burch, “Relative measurement of the photodetachment cross section for H,” Phys. Rev. 116, 1125–1131 (1959).

    ADS  Article  Google Scholar 

  32. 32.

    A. L. Stewart, “A perturbation-variation study of photodetachment from H,” J. Phys. B: At. Mol. Phys. 11, 3851–3860 (1978).

    ADS  Article  Google Scholar 

  33. 33.

    M. P. Thekaekara, “Proposed standard values of the solar constant and the solar spectrum,” J. Environ. Sci. (Mount Prospect, Ill.) 13, 6–9 (1970).

    Google Scholar 

  34. 34.

    M. P. Thekaekara, “Extraterrestrial solar spectrum, 3000–6100 Å at 1 Å intervals,” Appl. Opt. 13, 518–522 (1974).

    ADS  Article  Google Scholar 

  35. 35.

    M. P. Thekaekara and A. J. Drummond, “Standard values for the solar constant and its spectral components,” Nat. Phys. Sci. 229, 6–9 (1971).

    ADS  Article  Google Scholar 

  36. 36.

    M. P. Thekaekara, R. Kruger, and C. H. Duncan, “Solar irradiance measurements from a research aircraft,” Appl. Opt. 8, 1713–1732 (1969).

    ADS  Article  Google Scholar 

  37. 37.

    G. Thuillier, D. Bolsee, G. Schmidtke, et al., “The solar irradiance spectrum at solar activity minimum between solar cycles 23 and 24,” Sol. Phys. 289, 1938–1958 (2014).

    ADS  Google Scholar 

  38. 38.

    G. Thuillier, T. Foujols, D. Bolsee, et al., “SOLAR/SOLSPEC: Instrument performance and its absolute calibration using a blackbody as primary standard source,” Sol. Phys. 257, 185–213 (2009).

    ADS  Article  Google Scholar 

  39. 39.

    G. Thuillier, J. P. Goutail, P. C. Simon, et al., “Measurement of the solar spectral irradiance from 200 to 3000 nanometers,” Science 225, 182–184 (1984).

    ADS  Article  Google Scholar 

  40. 40.

    G. Thuillier, J. W. Harder, A. Shapiro, et al., “The infrared solar spectrum measured by the SOLSPEC spectrometer onboard the International Space Station,” Sol. Phys. 290, 1581–1600 (2015).

    ADS  Article  Google Scholar 

  41. 41.

    G. Thuillier, M. Herse, D. Labs, et al., “The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the Atlas and Eureka missions,” Sol. Phys. 214, 1–22 (2003).

    ADS  Article  Google Scholar 

  42. 42.

    G. Thuillier, M. Herse, P. C. Simon, et al., “The visible solar spectral irradiance from 350 to 850 nm as measured by the SOLSPEC spectrometer during the Atlas I mission,” Sol. Phys. 177, 41–61 (1998).

    ADS  Article  Google Scholar 

  43. 43.

    G. Thuillier, M. Herse, P. C. Simon, et al., “The absolute solar spectral irradiance from 200 to 2500 nm as measured by the SOLSPEC spectrometer with the ATLAS and EURECA missions,” Phys. Chem. Earth, Part C: Sol., Terr. Planet. Sci. 25 (5–6), 375–377 (2000).

    Google Scholar 

  44. 44.

    J. E. Vernazza, E. H. Avrett, and R. Loeser, “Structure of the solar chromosphere. I. Basic computation and summary of the results,” Astrophys. J. 184, 605–632 (1973).

    ADS  Article  Google Scholar 

  45. 45.

    J. E. Vernazza, E. H. Avrett, and R. Loeser, “Structure of the solar chromosphere. II. The underlying photosphere and temperature-minimum region,” Astrophys. J., Suppl. Ser. 30, 1–60 (1976).

    ADS  Article  Google Scholar 

  46. 46.

    J. E. Vernazza, E. H. Avrett, and R. Loeser, “Structure of the solar chromosphere. III. Models of the EUV brightness components of the quiet Sun,” Astrophys. J., Suppl. Ser. 45, 635–725 (1981).

    ADS  Article  Google Scholar 

  47. 47.

    M. Weber, “Comment on the article by Thuillier et al., The infrared solar spectrum measured by the SOLSPEC spectrometer onboard the International Space Station,” Invited review, Sol. Phys. 290, 1601–1605 (2015).

    Article  Google Scholar 

  48. 48.

    R. Wildt, “Negative ions of hydrogen and the opacity of stellar atmospheres,” Astrophys. J. 90, 611–620 (1939).

    ADS  Article  MATH  Google Scholar 

  49. 49.

    R. Wildt, “The continuous spectrum of stellar atmospheres consisting only of atoms and negative ions of hydrogen,” Astrophys. J. 93, 47–51 (1941).

    ADS  Article  Google Scholar 

  50. 50.

    A. W. Wishart, “The bound-free photodetachment cross section of H,” J. Phys. B: At. Mol. Phys. 12, 3511–3519 (1979).

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to M. V. Vavrukh or I. E. Vasil’eva.

Additional information

Original Russian Text © M.V. Vavrukh, I.E. Vasil’eva, O.M. Stelmakh, N.L. Tyshko, 2016, published in Kinematika i Fizika Nebesnykh Tel, 2016, Vol. 32, No. 3, pp. 40–62.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vavrukh, M.V., Vasil’eva, I.E., Stelmakh, O.M. et al. Continuous absorption and depression in the solar spectrum at wavelengths from 650 to 820 nm. Kinemat. Phys. Celest. Bodies 32, 129–144 (2016). https://doi.org/10.3103/S0884591316030053

Download citation