Skip to main content
Log in

Search for the sources of cosmic rays with energies above 1020 eV

  • Extragalactic Astronomy
  • Published:
Kinematics and Physics of Celestial Bodies Aims and scope Submit manuscript

Abstract

The sources of ultrahigh energy cosmic rays (UHECRs, E >1018 eV) are still unknown, mainly due to the loss of the direction to the source after the deflection of cosmic rays’ (CRs) trajectories in the galactic and extragalactic magnetic fields. With the increase in CR energy (rigidity), the influence of the magnetic field weakens; therefore, the most promising approach is to search for the sources of events with the highest energy. In our work, we expand the existing UHECR (E > 1020 eV) sample from 33 to 42 events by calibrating the AUGER events. The sample is characterized by the presence of an event triplet in a circle of radius 3°. The highest-energy event is still the shower (E = 3.2 × 1020 eV) detected with the Fly’s Eye fluorescent detector (FE-event) in 1993. The possible sources of the triplet and the FE-event are analyzed. Taking into account the deflection of CR trajectories in the extragalactic and galactic magnetic fields, it is shown that transient sources of the FE-event and the triplet may be galaxies with active star formation, where CRs are accelerated by newborn millisecond pulsars. Among the galactic sources, the potential candidates are young pulsars that might have had millisecond periods at birth and giant magnetar flares.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Aab, P. Abreu, M. Aglietta, et al., “Searches for large-scale anisotropy in the arrival directions of cosmic rays detected above energy of 1019 eV at the Pierre Auger Observatory and the Telescope Array,” Astrophys. J. 794, 172 (2014).

    Article  ADS  Google Scholar 

  2. A. Aab, P. Abreu, M. Aglietta, et al., “Searches for anisotropies in the arrival directions of the highest energy cosmic rays detected by the Pierre Auger Observatory,” Astrophys. J. 804, 15 (2015).

    Article  ADS  Google Scholar 

  3. R. U. Abbasi, M. Abe, T. Abu-Zayyad, et al., “Indications of intermediate-scale anisotropy of cosmic rays with energy greater than 57 EeV in the northern sky measured with the surface detector of the Telescope Array experiment,” Astrophys. J. Lett. 790, L21 (2014).

    Article  ADS  Google Scholar 

  4. R. U. Abbasi, M. Abe, T. Abu-Zayyad, et al., “Study of ultra-high energy cosmic ray composition using Telescope Array’s middle drum detector and surface array in hybrid mode,” Astropart. Phys. 64, 49–62 (2015).

    Article  ADS  Google Scholar 

  5. R. Abbasi, J. Bellido, J. Belz, et al., “Report of the working group on the composition of ultra high energy cosmic rays,” arXiv:1503.07540[astro-ph.HE] (2015).

    Google Scholar 

  6. T. Abu-Zayyad, R. Aida, M. Allen, et al., “Energy spectrum of ultra-high energy cosmic rays observed with the Telescope Array using a hybrid technique,” Astropart. Phys. 61, 93–101 (2015).

    Article  ADS  Google Scholar 

  7. D. Allard, “Extragalactic propagation of ultrahigh energy cosmic-rays,” Astropart. Phys. 39–40, 33–43 (2012).

    Article  Google Scholar 

  8. R. Aloisio, V. Berezinsky, P. Blasi, et al., “A dip in the UHECR spectrum and the transition from galactic to extragalactic cosmic rays,” Astropart. Phys. 27, 76–91 (2007).

    Article  ADS  Google Scholar 

  9. R. Aloisio, V. Berezinsky, and P. Blasi, “Ultra high energy cosmic rays: implications of Auger data for source spectra and chemical composition,” J. Cosmol. Astropart. Phys., No. 10, 020 (2014).

    Article  ADS  Google Scholar 

  10. V. S. Berezinsky, S. I. Grigorieva, and B. I. Hnatyk, “Extragalactic UHE proton spectrum and prediction for iron-nuclei flux at 108–109 GeV,” Astropart. Phys. 21, 617–625 (2004).

    Article  ADS  Google Scholar 

  11. D. J. Bird, S. C. Corbato, H. Y. Dai, et al., “Detection of a cosmic ray with measured energy well beyond the expected spectral cutoff due to cosmic microwave radiation,” Astrophys. J. 441 (1), 144–150 (1995).

    Article  ADS  Google Scholar 

  12. R. C. Duncan and C. Thompson, “Formation of very strongly magnetized neutron stars–Implications for gamma-ray bursts,” Astrophys. J. 392 (1), L9–L13 (1992).

    Article  ADS  Google Scholar 

  13. R. Durrer and A. Neronov, “Cosmological magnetic fields: their generation, evolution and observation,” Astron. Astrophys. Rev. 21, 62 (2013).

    Article  ADS  Google Scholar 

  14. D. Eichler, “Ultrahigh energy activity in giant magnetar outbursts,” arXiv:astro-ph/0504452 (2005).

    Google Scholar 

  15. A. A. Elyiv, I. D. Karachentsev, V. E. Karachentseva, et al., “Low-density structures in the Local Universe. II. Nearby cosmic voids,” Astrophys. Bull. 68, 1–13 (2013).

    Article  ADS  Google Scholar 

  16. A. Etchegoyen, “Science and detectors of the Pierre Auger Observatory,” arXiv:1004.2635[astro-ph.IM] (2010).

    Google Scholar 

  17. K. Fang, K. Kotera, K. Murase, et al., “Testing the newborn pulsar origin of ultrahigh energy cosmic rays with EeV neutrinos,” Phys. Rev. D: Part. Fields 90, 103005 (2014).

    Article  ADS  Google Scholar 

  18. G. R. Farrar and T. Piran, “Tidal disruption jets as the source of ultra-high energy cosmic rays,” arXiv:1411.0704[astro-ph.HE] (2014).

    Google Scholar 

  19. G. Ferrand and S. Safi-Harb, “A census of high-energy observations of Galactic supernova remnants,” Adv. Space Res. 49, 1313–1319 (2012).

    Article  ADS  Google Scholar 

  20. M. Fukushima, “Recent results from Telescope Array,” arXiv:1503.06961[astro-ph.HE] (2015).

    Google Scholar 

  21. F. Halzen, R. A. Vázquez, T. Stanev, et al., “The highest energy cosmic ray,” Astropart. Phys. 3, 151–156 (1995).

    Article  ADS  Google Scholar 

  22. H. He, A. Kusenko, S. Nagataki, et al., “The possible extragalactic source of ultra-high-energy cosmic rays at the telescope array hotspot” arXiv:1411.5273v1[astro-ph.HE] (2014).

    Google Scholar 

  23. R. Jansson and G. R. Farrar, “The galactic magnetic field,” Astrophys. J. Lett. 761, L11 (2012).

    Article  ADS  Google Scholar 

  24. R. Jansson and G. R. Farrar, “A new model of the Galactic magnetic field,” Astrophys. J. 757, 14 (2012).

    Article  ADS  Google Scholar 

  25. K. Kotera and A. V. Olinto, “The astrophysics of ultrahigh energy cosmic rays,” Annu. Rev. Astron. Astrophys. 49, 119–153 (2011).

    Article  ADS  Google Scholar 

  26. D. Kuempel, “Extragalactic propagation of ultra-high energy cosmic rays,” arXiv:1409.3129v2[astro-ph.HE] (2014).

    Google Scholar 

  27. M. Lemoine, K. Kotera, and J. Petri, “On ultra-high energy cosmic ray acceleration at the termination shock of young pulsar winds” arXiv:1409.0159v1[astro-ph.HE] (2014).

    Google Scholar 

  28. M. Lemoine and E. Waxman, “Anisotropy vs chemical composition at ultra-high energies,” J. Cosmol. Astropart. Phys., No. 11, 009 (2009).

    Article  ADS  Google Scholar 

  29. X.-W. Liu, X.-F. Wu, and T. Lu, “Diffuse high energy neutrinos and cosmic rays from hyper-flares of softgamma repeaters,” New Astron. 15, 292–296 (2010).

    Article  ADS  Google Scholar 

  30. R. N. Manchester, G. B. Hobbs, A. Teoh, et al., “The Australia Telescope National Facility Pulsar Catalogue,” Astron. J. 129, 1993–2006 (2005).

    Article  ADS  Google Scholar 

  31. R. Moharana and S. Razzaque, “Angular correlation of cosmic neutrinos with ultrahigh-energy cosmic rays and implications for their sources,” arXiv:1501.0518v1[astro-ph.HE] (2015).

    Google Scholar 

  32. S. A. Olausen and V. M. Kaspi, “The McGill Magnetar Catalog,” Astrophys. J., Suppl. Ser. 212, 6 (2014).

    Article  ADS  Google Scholar 

  33. H. Ritter and U. Kolb, “Catalogue of cataclysmic binaries, low-mass X-ray binaries and related objects (Seventh edition),” Astron. Astrophys. 404, 301–303 (2003).

    Article  ADS  Google Scholar 

  34. P. Sokolsky, “Recent results from TA,” in Report on JSI Workshop 2014 Multimessenger Astronomy in the Era of PeV neutrinos, Annapolis, USA, December, 2014 (JSI, 2014).

    Google Scholar 

  35. H. Takami, K. Murase, and C. D. Dermer, “Isotropy constraints on powerful sources of ultrahigh-energy cosmic rays at 1019 eV,” arXiv:1412.4716v2[astro-ph.HE] (2014).

    Google Scholar 

  36. S. V. Troitsky, “Doublet of cosmic-ray events with primary energies >1020 eV,” J. Exper. Theor. Phys. Lett. 96, 13–16 (2012).

    Article  Google Scholar 

  37. R. B. Tully and J. R. Fisher, Nearby Galaxies Atlas (Cambridge Univ. Press, Cambridge, 1987).

    Google Scholar 

  38. M. Wenger, F. Ochsenbein, D. Egret, et al., “The SIMBAD astronomical database. The CDS reference database for astronomical objects,” Astron. Astrophys., Suppl. Ser. 143, 9–22 (2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. B. Gnatyk.

Additional information

Original Russian Text © R.B. Gnatyk, 2016, published in Kinematika i Fizika Nebesnykh Tel, 2016, Vol. 32, No. 1, pp. 3–20.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gnatyk, R.B. Search for the sources of cosmic rays with energies above 1020 eV. Kinemat. Phys. Celest. Bodies 32, 1–12 (2016). https://doi.org/10.3103/S0884591316010037

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0884591316010037

Keywords

Navigation