Skip to main content
Log in

On the theory of transversally small-scale modes in the cylindrical plasma column

  • Space Physics
  • Published:
Kinematics and Physics of Celestial Bodies Aims and scope Submit manuscript

Abstract

The equation of small oscillations for a circular, cross-section plasma column with a helical magnetic field is obtained. It is shown that this equation is equivalent to the Hain–Lust equation. However, it has a much simpler form. The equation makes it possible to obtain a number of previously known results and to analyze transversally small-scale MHD perturbations. The criterion for the stability of these modes and the expression for the maximum increment are found. The areas of propagation of stable and unstable modes are defined. The obtained results can be used to interpret the behavior of solar magnetic tubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Bateman, MHD Instabilities (MIT Press, Cambridge, 1978; Energoizdat, Moscow, 1982).

    Google Scholar 

  2. A. Bernstein, “The variational principle for problems of ideal magnetohydrodynamic stability,” in Basic Plasma Physics, Vol. 1, Ed. by A. A. Galeev and R. Sudan (North-Holland, Amsterdam, 1983; Energoatomizdat, Moscow, 1984), pp. 421–451.

    Google Scholar 

  3. M. Goossens, “MHD waves and wave heating in nonuniform plasmas,” in Advances in Solar System Magnetohydrodynamics, Ed. by E. R. Priest and A. W. Hood (Cambridge Univ. Press, Cambridge, 1991; Mir, Moscow, 1995), p. 137.

    Google Scholar 

  4. A. G. Zagorodnii and O. K. Cheremnykh, Introduction to Plasma Physics (Naukova Dumka, Kiev, 2014) [in Russian].

    Google Scholar 

  5. B. B. Kadomtsev, “Hydrodynamic plasma stability,” in Problems of Plasma Theory, Vol. 2, Ed. by M. A. Leontovich (Gosatomizdat, Moscow, 1963), pp. 132–176 [in Russian].

    Google Scholar 

  6. K. Miyamoto, Plasma Physics and Controlled Nuclear Fusion (Springer-Verlag, 2005; Fizmatlit, Moscow, 2007).

    Google Scholar 

  7. Yu. P. Ladikov-Roev and O. K. Cheremnykh, Mathematical Models of Continuous Media (Naukova Dumka, Kiev, 2010) [in Russian].

    Google Scholar 

  8. N. G. Mazur, E. N. Fedorov, and V. A. Pilipenko, “Dispersion relation for ballooning modes and condition of their stability in the near-earth plasma,” Geomagn. Aeron. 52, 603–612 (2012).

    Article  ADS  Google Scholar 

  9. A. B. Mikhailovskii, Theory of Plasma Instabilities, Vol. 2: Instabilities of an Inhomogeneous Plasma in Ser. Studies in Soviet Science (Atomizdat, Moscow, 1971; Consultants Bureau, New York, 1974).

    Book  Google Scholar 

  10. E. Parker, Cosmic Magnetic Fields: Their Origin and Their Activity (Clarenton, Oxford, 1979; Mir, Moscow, 1982).

    Google Scholar 

  11. E. R. Priest, Solar Magnetohydrodynamics (Reidel, Dordrecht, 1982; Mir, Moscow, 1985).

    Google Scholar 

  12. B. Roberts, “MHD waves in the Sun,” in Advances in Solar System Magnetohydrodynamics, Ed. by E. R. Priest and A. W. Hood (Cambridge Univ. Press, Cambridge, 1991; Mir, Moscow, 1995), pp. 105–136.

    Google Scholar 

  13. B. R. Suydam, “Stability in a linear pinch,” in Proc. 2nd Int. Conf. on the Peaceful Use of Atomic Energy, Geneva, Sep. 1–13, 1958 (Am. Chem. Soc., 1959; Atomizdat, Moscow, 1959), pp. 157–159.

    Google Scholar 

  14. B. A. Trubnikov, Plasma Theory (Energoatomizdat, Moscow, 1996) [in Russian].

    Google Scholar 

  15. B. P. Filippov, Eruptive Processes on the Sun (Fizmatlit, Moscow, 2007) [in Russian].

    Google Scholar 

  16. Yu. T. Tsap, Yu. G. Kopylova, and A. V. Stepanov, “Ballooning instability and oscillations of coronal loops,” Astron. Rep. 50, 1026–1035 (2006).

    Article  ADS  Google Scholar 

  17. O. K. Cheremnykh, D. Yu. Klimushkin, and D. V. Kostorev, “On the structure of azimuthally small-scale ULF oscillations of hot space plasma in a curved magnetic field. Modes with continuous spectrum,” Kinematics Phys. Celestial Bodies 30, 209–222 (2014).

    Article  Google Scholar 

  18. V. D. Shafranov, “On the question of hydromagnetic stability of the plasma filament with current in a strong magnetic field,” Zh. Eksp. Teor. Fiz. 40, 241–253 (1970).

    Google Scholar 

  19. A. V. Agapitov and O. K. Cheremnykh, “Natural oscillations of the Earth magnetosphere associated with solar wind sudden impulses,” Ukr. J. Phys. 53, 598–512 (2008).

    Google Scholar 

  20. A. V. Agapitov and O. K. Cheremnykh, “Polarization of ULF waves in the Earth’s magnetosphere,” Kinematics Phys. Celestial Bodies 27, 117–123 (2011).

    Article  ADS  Google Scholar 

  21. O. S. Burdo, O. K. Cheremnykh, S. M. Revenchuk, and V. D. Pustovitov, “General geometric dispersion relations for toroidal plasma configuration,” Plasma Phys. Controlled Fusion 36, 641–656 (1994).

    Article  ADS  Google Scholar 

  22. O. S. Burdo, O. K. Cheremnykh, and O. P. Verkhoglyadova, “Study of ballooning modes in the inner magnetosphere of the Earth,” Izv. Ross. Akad. Nauk, Ser. Fiz. 69, 1896–1900 (2000).

    Google Scholar 

  23. O. K. Cheremnykh, “Transversally small-scale perturbation in arbitrary plasma configurations with magnetic surfaces,” Plasma Phys. Controlled Fusion 52, 095006 (2010).

    Article  ADS  Google Scholar 

  24. O. K. Cheremnykh, Z. M. Andrushchenko, J. W. Edenstrasser, and V. B. Taranov, “Relaxation of non-ideal magnetohydrodynamic plasma in cylindrical column,” Phys. Plasmas 1, 2525–2530 (1994).

    Article  ADS  Google Scholar 

  25. O. K. Cheremnykh and V. V. Danilova, “Transversal small-scale MHD perturbations in space plasma with magnetic surfaces,” Kinematics Phys. Celestial Bodies 27, 98–108 (2011).

    Article  ADS  Google Scholar 

  26. O. K. Cheremnykh and A. S. Parnovski, “The theory of ballooning perturbations in the inner magnetosphere of the Earth,” Adv. Space Res. 33, 769–773 (2004).

    Article  ADS  Google Scholar 

  27. O. K. Cheremnykh and A. S. Parnovski, “Flute and ballooning modes in the inner magnetosphere of the Earth: Stability and influence of the ionospheric confuctivity”, in Space Science: New Research, Ed. by N. S. Maravell, (Nova Sci., New York, 2006), pp. 71–108.

    Google Scholar 

  28. O. K. Cheremnykh and A. S. Parnovski, “Influence of ionospheric conductivity of the ballooning modes in the inner magnetosphere of the Earth,” Adv. Space Res. 37, 599–603 (2006). doi 10.1016/j.asr.2005.01.073.

    Article  ADS  Google Scholar 

  29. R. L. Dewar and A. H. Glasser, “Ballooning mode spectrum in general toroidal systems,” Phys. Fluids 26, 3038–3052 (1983).

    Article  ADS  MATH  Google Scholar 

  30. K. Hain and R. Z. Lust, “Zur stabilität zylinder symmetrischer plasma konfigurationen mit volumenströmen,” Naturforsh 13a, 936–940 (1957).

    MathSciNet  ADS  Google Scholar 

  31. D. Yu. Klimushkin, “Spatial structure of transversally small-scale hydromagnetic waves in plane finite-beta model magnetosphere,” Planet. Space Sci. 45, 269–279 (1997). doi 10.1016/S0032-0633(96)00078-5.

    Article  ADS  Google Scholar 

  32. D. Yu. Klimushkin, A. S. Leonovich, and V. A. Mazur, “On the propagation of transversally small-scale standing Alfven waves in a three-dimensionally inhomogeneous magnetosphere,” J. Geophys. Res.: Space Phys. 100, 9527–9534 (1995).

    Article  ADS  Google Scholar 

  33. M. D. Kruskal, J. L. Johnson, M. B. Gottlieb, and L. M. Goldman, “Hydromagnetic instability in stellarator,” Phys. Fluids 1, 217–224 (1958).

    MathSciNet  Google Scholar 

  34. A. S. Leonovich and V. A. Mazur, “A theory of transverse small-scale standing Alfven waves in an axially symmetric magnetosphere,” Planet. Space Sci. 41, 697–717 (1993).

    Article  ADS  Google Scholar 

  35. C. Mercier, “Critere de stabilite d’un system toroidal hydromagnetique en pressure scalaire,” Nucl. Fus. Suppl. 2, 801–808 (1962).

    Google Scholar 

  36. A. V. Stepanov, K. Shibasaki, Yu. G. Kopylova, and Yu. T. Tsap, “MHD-oscillatios of coronal loops and diagnostics of flare plasma,” in Proc. Nobeyama Symp. 2004 on Solar Physics with Nobeyama Radioheliograph, Kiyosato, Oct. 26–29, 2004 (Nobeyama Solar Radio Observatory, Kiyosato, 2006), pp. 23–31.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. K. Cheremnykh.

Additional information

Original Russian Text © O.K. Cheremnykh, 2015, published in Kinematika i Fizika Nebesnykh Tel, 2015, Vol. 31, No. 5, pp. 3–19.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheremnykh, O.K. On the theory of transversally small-scale modes in the cylindrical plasma column. Kinemat. Phys. Celest. Bodies 31, 213–224 (2015). https://doi.org/10.3103/S0884591315050025

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0884591315050025

Keywords

Navigation