Skip to main content

Zonal differences in the vertical structure of the cloud cover of Jupiter from the measurements of the methane absorption bands at 727 and 619 nm


Data on the contours of absorption bands of methane at λ = 619 and 727 nm obtained for the latitude belts of Jupiter in 2013 have been analyzed. From the spectral values of reflectivity, the changes in the aerosol and gas components of the effective optical depth in dependence on the depth in the atmosphere were found. Zonal differences in the vertical structure of the cloud cover of Jupiter were revealed; they were quantitatively estimated, and the levels where the linear size or the nature of aerosol particles probably changed were determined. The signs indicating the presence of the aerosol layer deep in the atmosphere were found.

This is a preview of subscription content, access via your institution.


  1. 1.

    V. V. Avramchuk, L. A. Bugaenko, A. V. Morozhenko, and E. G. Yanovitskij, “The results of research of Jupiter, performed at the Main astronomical observatory of the Ukrainian SSR Academy of Sciences,” Astrom. Astrofiz., No. 31, 54–68 (1977).

    Google Scholar 

  2. 2.

    V. D. Vdovichenko, “The spectrophotometry of Jupiter at λλ 0.6–1.1 micrometers: the latitudinal changes in optical parameters of the Jupiter’s atmosphere,” Astron. Zh. 56, 606–612 (1979).

    ADS  Google Scholar 

  3. 3.

    V. A. Kucherov, M. I. Mishchenko, and A. V. Morozhenko, “The spectropolarimetry in absorption bands and the vertical structure of planetary atmospheres,” Pis’ma Astron. Zh. 14, 835–839 (1990).

    ADS  Google Scholar 

  4. 4.

    A. V. Morozhenko, “The results of the polarization studies of Jupiter,” Astrom. Astrofiz., No. 30, 47–54 (1976).

    Google Scholar 

  5. 5.

    A. V. Morozhenko, “On the structure of the Jupiter’s cloud layer,” Pis’ma Astron. Zh. 10, 775–779 (1984).

    ADS  Google Scholar 

  6. 6.

    A. V. Morozhenko, “The vertical structure of Jupiter’s latitudinal cloud belts,” Astron. Vestn. 19, 64–76 (1985).

    ADS  Google Scholar 

  7. 7.

    A. V. Morozhenko, “Zones and belts of the Jupiter’s disk. The above-cloud layer,” Astron. Vestn. 24, 211–220 (1990).

    ADS  Google Scholar 

  8. 8.

    A. V. Morozhenko, “Problems in research of the vertical structures of cloud layers in atmospheres of giant planets,” Kinematika Fiz. Nebesnykh Tel 9, 3–26 (1993).

    Google Scholar 

  9. 9.

    A. V. Morozhenko, “Probable limits for particle size and relative concentrations of aerozol and methane on formation levels of methane absorption bands centers at λλ 727, 619, 543 and 441 nm in the Neptune’s atmosphere,” Kinematika Fiz. Nebesnykh Tel 15, 110–122 (1999).

    ADS  Google Scholar 

  10. 10.

    A. V. Morozhenko, “The results of spectropolarimetric observations of planets and Halileic satellites of Jupiter in oppositions in 1986, 1988 and 1989,” Kinematika Fiz. Nebesnykh Tel 17, 45–57 (2001).

    ADS  Google Scholar 

  11. 11.

    O. V. Morozhenko, Methods and Results of the Remote Sensing of Planetary Atmospheres (Nauk. Dumka, Kiev, 2004) [in Ukrainian].

    Google Scholar 

  12. 12.

    V. V. Sobolev, “The research of the Venus’ atmosphere. II,” Astron. Zh. 45, 169–176 (1968).

    ADS  Google Scholar 

  13. 13.

    V. G. Teifel’, “On the changes of top height of the Jupiter’s cloud layer with latitude,” Pis’ma Astron. Zh. 1, 34–40 (1975).

    ADS  Google Scholar 

  14. 14.

    E. G. Yanovitskii, “The effective optical width of a cloud layer of the atmosphere, in which a visible spectr of the planet forms. The concept and basic evaluation,” Kinematika Fiz. Nebesnykh Tel 13(6), 18–25 (1997).

    Google Scholar 

  15. 15.

    J. W. Chamberlain, “The atmosphere of Venus near cloud top,” Astrophys. J. 141, 1184–1205 (1965).

    ADS  Article  Google Scholar 

  16. 16.

    D. L. Coffeen, “Optical polarization measurements of the Jupiter atmosphere at 103° phase angle,” J. Geophys. Res. 79, 3645–3660 (1974).

    ADS  Article  Google Scholar 

  17. 17.

    M. S. Dementiev and A. V. Morozhenko, “Zones and belts of Jupiter’s disk. The difference in the vertical structure of cloud layers,” Solar Syst. Res. 24, 275–287 (1990).

    Google Scholar 

  18. 18.

    Z. M. Dlugach and M. I. Mischenko, “The effect of aerosol shape in retrieving optical properties of cloud particles in the planetary atmospheres from the photopolarimetric data. Jupiter,” Solar Syst. Res. 32, 102–111 (2005).

    ADS  Article  Google Scholar 

  19. 19.

    Z. M. Dlugach and M. I. Mischenko, “Photopolarimetry of planetary atmospheres: what observational data are essential for a unique retrieval of aerosol microphysics?,” Mon. Not. R. Astron. Soc. 384, 64–70 (2008).

    ADS  Article  Google Scholar 

  20. 20.

    P. J. Gierash, B. J. Conrath, and J. A. Magalhaes, “Zonal mean properties of Jupiter’s upper troposphere from Voyager infrared observations,” Icarus 67, 456–483 (1986).

    ADS  Article  Google Scholar 

  21. 21.

    L. P. Giver, “Intensity measurements of the CH4 bands in the region of 4350 to 10600 A,” J. Quant. Spectrosc. Radiat. Transfer 19, 311–322 (1978).

    ADS  Article  Google Scholar 

  22. 22.

    J. E. Hansen, “Circular polarization of sunlight reflected by clouds,” J. Atmos. Sci. 28, 6–12 (1971).

    Google Scholar 

  23. 23.

    E. Karkoschka, “Spectrophotometry of the Jovian planets and Titan at 300 to 1000 nm wavelength: The methane spectrum,” Icarus 111, 967–982 (1994).

    Article  Google Scholar 

  24. 24.

    Y. Kawata and J. E. Hansen, “Circular polarization of sunlight reflected by Jupiter,” in Jupiter: Studies of the Interior, Atmosphere, Magneteosphere, and Satellites, Ed. by T. Gehrels (Univ. of Arizona Press, Tuscon, 1976), pp. 516–530.

    Google Scholar 

  25. 25.

    M. I. Mishchenko, “Physical properties of the upper tropospheric aerosols in the equatorial region of Jupiter,” Icarus 84, 296–304 (1990).

    ADS  Article  Google Scholar 

  26. 26.

    M. I. Mischchenko, “The FORTRAN code for computing the scattering of an ensemble of polydisperse, homogeneous spherical particles in based on the Lorenz-Mie theory,”

  27. 27.

    A. V. Morozhenko, “New determination of monochromatic methane absorption coefficients with regard to the thermal conditions in the atmospheres of giant planets. IV. Jupiter and Saturn,” Kinematics Phys. Celestial Bodies 23, 245–257 (2007).

    ADS  Article  Google Scholar 

  28. 28.

    A. V. Morozhenko, A. S. Ovsak, and P. P. Korsun, “The Vertical Structure of Jupiter’s Cloud Layer Before and After the Impact of Comet Shoemaker-Levy 9,” in Proc. Eur. SL-9/Jupiter Workshop, München, Feb. 13–15, 1995 (European Southern Observatory, Garching, 1995).

    Google Scholar 

  29. 29.

    A. V. Morozhenko and E. G. Yanovitskij, “The optical properties of Venus and Jovian planets. I. The atmosphere of Jupiter according to polarimetric observations,” Icarus 18, 583–592 (1973).

    ADS  Article  Google Scholar 

  30. 30.

    A. S. Ovsak, “Calculation of effective optical depth of absorption line formation in homogeneous semi-infinite planetary atmosphere during anisotropic scattering,” Kinematics Phys. Celestial Bodies 26, 86–88 (2010).

    ADS  Article  Google Scholar 

  31. 31.

    A. S. Ovsak, “Upgraded technique to analyze the vertical structure of the aerosol component of the atmospheres of giant planets,” Kinematics Phys. Celestial Bodies 29, 291–300 (2013).

    ADS  Article  Google Scholar 

  32. 32.

    A. S. Ovsak, “Vertical structure of cloud layers in the atmospheres of giant planets. I. On the influence of variations of some atmospheric parameters on the vertical structure characteristics,” Solar Syst. Res. 49, 46–53 (2015).

    ADS  Article  Google Scholar 

  33. 33.

    A. S. Ovsak, “Changes in the characteristics of the upper layers of the Jovian atmosphere from the data on the integral observations of the planetary disk,” Kinematics Phys. Celestial Bodies 31, 25–32 (2015).

    ADS  Article  Google Scholar 

  34. 34.

    M. J. Price, J. S. Hall, P. B. Boyce, and R. Albrecht, “The physical properties of the Jovian atmosphere inferred from eclipses of the Galilean satellites. II. 1971 apparition,” Icarus 17, 49–56 (1972).

    ADS  Article  Google Scholar 

  35. 35.

    K. Rages, R. Beebe, and D. Senske, “Jovian stratospheric hazes: The high phase view from Galileo,” Icarus 139, 211–226 (1999).

    ADS  Article  Google Scholar 

  36. 36.

    T. Sato and K. Kawabata, “Methane band photometry of the faded south equatorial band of Jupiter,” Astrophys. J. 384, 298–304 (1992).

    ADS  Article  Google Scholar 

  37. 37.

    P. H. Smith, “The vertical structure of the Jovian atmosphere,” Icarus 65, 264–279 (1986).

    ADS  Article  Google Scholar 

  38. 38.

    M. G. Tomasko, R. A. West, and N. D. Catillo, “Photometry and polarimetry of Jupiter at large phase angles. I. Analysis of imaging data of a prominent belt and a zone from Pioneer 10,” Icarus 33, 558–592 (1978).

    ADS  Article  Google Scholar 

  39. 39.

    R. A. West, K. H. Baines, and A. J. Friedson, “Jovian clouds and haze,” in Jupiter. The Planet, Satellites and Magnetosphere, Ed. by F. Bagenal, T. E. Dowling, and W. B. McKinnon (Cambridge Univ. Press, Cambridge, 2004), Vol. 1, pp. 79–104.

    Google Scholar 

  40. 40.

    E. G. Yanovitskij and A. S. Ovsak, “Effective optical depth of absorption line formation in semi-infinite planetary atmospheres,” Kinematics Phys. Celestial Bodies 13(4), 1–19 (1997).

    ADS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to A. S. Ovsak.

Additional information

Original Russian Text © A.S. Ovsak, V.G. Teifel, A.P. Vid’machenko, P.G. Lysenko, 2015, published in Kinematika i Fizika Nebesnykh Tel, 2015, Vol. 31, No. 3, pp. 23–39.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ovsak, A.S., Teifel, V.G., Vid’machenko, A.P. et al. Zonal differences in the vertical structure of the cloud cover of Jupiter from the measurements of the methane absorption bands at 727 and 619 nm. Kinemat. Phys. Celest. Bodies 31, 119–130 (2015).

Download citation


  • Vertical Structure
  • Celestial Body
  • Giant Planet
  • Cloud Layer
  • Planetary Atmosphere