Multicomponent simulation of emission of low-metallicity H II regions


Using multicomponent photoionization simulation, we investigated the impact of bubble-like structures around starbursts inside the low-metallicity H II regions on the ionization spectrum shape and emission line forming. Radial distribution of density values and other physical parameters of bubble-like structures were taken from Weaver et al. (Weaver et al., 1977, p. 377). The first and second inner components of such models describe the free expansion zone of superwind from the central starburst region and rarefied hot gas of the cavern thermalized by inverse shock wave, respectively. The gas density and electron temperature distributions into these components are obtained from the solution of the system of equations of continuity and energy transfer, including heat conductivity. The third component is a thin shell of high density gas formed from the gas surrounding a bubble and made by direct shock wind wave. The gas density in this component was obtained from isobaric condition at contact discontinuity between the second and third components. Input spectra of the ionizing radiation were obtained from the starburst evolutional models. The evolution grid of the multicomponent low-metallicity photoionization models with free parameters determining physical conditions inside the bubble-like structure was calculated. The impact of bubble-like structure on the change of ionization spectrum shape and the formation of fluxes of important emission lines in low-metallicity case was analyzed in detail.

This is a preview of subscription content, access via your institution.


  1. 1.

    N. G. Bochkarev and S. A. Zhekov, “X-radiation of some nebulae formed by star wind,” Astron. Rep. 67, 274–292 (1990).

    Google Scholar 

  2. 2.

    I. O. Koshmak and B. Ya. Melekh, “Simulation of emission of H II region containing bubble-like structure,” Kinematics Phys. Celestial Bodies 29(6), 3–19 (2013).

    Article  Google Scholar 

  3. 3.

    B. Ya. Melekh, “Optimized photoionization simulation of emission of H II region in blue compact dwarf galaxy SBS 0335-052,” Zh. Fiz. Dosl. 11, 353–365 (2007).

    Google Scholar 

  4. 4.

    B. Ya. Melekh, “Two-staged optimized simulation of emission of H II region in blue compact dwarf galaxy 0335-052,” Zh. Fiz. Dosl. 13, 3901-1–3901-16 (2009).

    Google Scholar 

  5. 5.

    B. Ya Melekh, I. O. Koshmak, and R. B. Kozel, “Influence of bubble-like structures formed by star wind on field of ionizing radiation in nebular objects,” Zh. Fiz. Dosl. 15, 3901–3908 (2011).

    Google Scholar 

  6. 6.

    B. Ya. Melekh, L. S. Piliuhin, and R. I. Korytko, “Conformity between intensities of stronf emission lines in specter of H II region and its chemical content,” Kinematics Phys. Celestial Bodies 28(4), 56–75 (2012).

    Article  Google Scholar 

  7. 7.

    F. Bresolin, D. Schaerer, R. M. González Delgado, et al., “A VLT study of metal-rich extra galactic H II regions. I. Observations and empirical abundances,” Astron. and Astro Phys. 441, 981–997 (2005).

    ADS  Article  Google Scholar 

  8. 8.

    J. Castor, R. McCray, R. Weaver, et al., “Interstellar bubbles,” Astrophys. J. 200, L107–L110 (1975).

    ADS  Article  Google Scholar 

  9. 9.

    K. Davidson, “On photoionization analyses of emission spectra of quasars,” Astrophys. J. 218, 20–32 (1977).

    ADS  Article  Google Scholar 

  10. 10.

    J. E. Dyson and D. A. Williams, Physics of the Interstellar Medium (Wiley, New York, 1997).

    Book  MATH  Google Scholar 

  11. 11.

    G. J. Ferland, “Hazy, a brief introduction to Cloudy”, University of Kentucky, Physics Department Internal Report, 200 (2008),

  12. 12.

    G. Ferland, L. Binette, M. Contini,et al., The Lexington Benchmarks for Numerical Simulations of Nebulae, Eds. by R. Williams and M. Livio (Space Telescope Science institute Symposium Series, Cambridge, 1995).

  13. 13.

    L. Gutiérrez, J. E. Beckman, “The galaxy-wide distributions of mean electron density in the H II regions of M51 and NGC 4449,” Astrophys. J. 710, 44–48 (2010).

    Article  Google Scholar 

  14. 14.

    Y. I. Izotov, T. X. Thuah, and V. A. Lipovetsky, “The primordial helium abundance from a new sample of metal deficient blue compact galaxies,” Astrophys. J. 435, 647–667 (1994).

    ADS  Article  Google Scholar 

  15. 15.

    B. C. Koo, C. F. McKee, “Dynamics of wind bubbles and superbubbles. I. Slow winds and fast winds. II. Analytic theory,” Astrophys. J. 388, 93–126 (1992).

    ADS  Article  Google Scholar 

  16. 16.

    R. V. Kozel, B. Ya. Melekh, “Photoionization modelling of H II region with stellar wind bubble inside,” in YSC’16 Proc. of Contributed Papers, 2009, pp. 37–41.

    Google Scholar 

  17. 17.

    T. Lanz and I. Hubeny, “A grid of non-LTE line-blanketed model atmospheres of O-Type stars,” Astrophys. J. Suppl. Ser. 146, 417–441 (2003).

    ADS  Article  Google Scholar 

  18. 18.

    T. Lanz and I. Hubeny, “A Grid of NLTE Line-blanketed model atmospheres of early B-type stars,” Astrophys. J. Suppl. Ser. 169, 83–104 (2007).

    ADS  Article  Google Scholar 

  19. 19.

    C. Leitherer, D. Schaerer, J. D. Goaldader, et al., “Starburst 99: Synthesis models for galaxies with active star formation,” Astrophys. J. Suppl. Ser. 123, 3–40 (1999).

    ADS  Article  Google Scholar 

  20. 20.

    J. S. Mathis, W. Rumpl, and K. H. Nordsieck, “The size distribution of interstellar grains,” Astrophys. J. 217, 425–433 (1977).

    ADS  Article  Google Scholar 

  21. 21.

    G. Mellema, “The interaction of stellar winds with their environment: Theory and modeling,” Astrophys. and Space Sci. 260, 203–213 (1998).

    ADS  Article  MATH  Google Scholar 

  22. 22.

    Proceedings of the Workshop on Model Nebulae held at Observatore de Meudon, July 8–19, 1985, Ed. by D. Pequignot (Observatoire de Paris, Paris, 1986), p. 376.

    Google Scholar 

  23. 23.

    L. S. Pilyugin, J. M. Vílchez, and T. X. Thuan, “New improved calibration relations for the determination of electron temperatures and oxygen and nitrogen abundances in H II regions,” Astrophys. J. 720, 1738–1751 (2010).

    ADS  Article  Google Scholar 

  24. 24.

    T. X. Thuah and Y. I. Izotov, “High-ionization emission in metal-deficient blue compact dwarf galaxies,” Astrophys. J. 161, 240–270 (2005).

    ADS  Article  Google Scholar 

  25. 25.

    J. P. Vallee, “Interstellar magnetic bubbles,” Astrophys. J. 419, 670–673 (1993).

    ADS  Article  Google Scholar 

  26. 26.

    R. Weave, R. McCra, J. Castor, et al., “Interstellar bubbles. II. Structure and evolution,” Astrophys. J. 218, 377–395 (1977).

    ADS  Article  Google Scholar 

  27. 27.

    D. Zaritsky, R. C. Kennicutt, and J. P. Huchra, “H II regions and the abundance properties of spiral galaxies,” Astrophys. J. 420, 87–109 (1994).

    ADS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to I. O. Koshmak.

Additional information

Original Ukranian Text © I.O. Koshmak, B.Ya. Melekh, 2014, published in Kinematika i Fizika Nebesnykh Tel, 2014, Vol. 30, No. 2, pp. 26–47.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Koshmak, I.O., Melekh, B.Y. Multicomponent simulation of emission of low-metallicity H II regions. Kinemat. Phys. Celest. Bodies 30, 70–84 (2014).

Download citation


  • Shock Wave
  • Star Formation
  • Celestial Body
  • Fourth Component
  • Star Formation Region