Modeling the emission of an H II region containing a bubble-like structure


The influence of a bubble-like structure around a starburst within the H II regions on the shape of the ionizing spectrum and the generation of the observed emission lines was studied using multicomponent photoionization modeling. The distributions of density and other physical parameters in such bubble-like structures were determined by Weaver et al. in 1977. The first two components represent the region of the stellar wind from the central starburst region. The gas density and electron temperature distributions in these components were described by the solution of the system of equations of continuity and energy transfer with account for the heat conductivity. The third component represents a thin layer of gas with a high density that emerges due to the passage of a normal shock wave of the stellar wind. The fourth component represents a “typical” H II region. The ionizing radiation spectra were set from the calculated evolutionary models whose free parameters determine the physical conditions within the “bubble.” The influence of the stellar wind bubble on the shape of the ionizing radiation spectrum and the generation of fluxes in important emission lines was analyzed.

This is a preview of subscription content, access via your institution.


  1. 1.

    N. G. Bochkarev and S. A. Zhekov, “X-Ray radiation of certain nebulae formed by the stellar wind,” Astron. Zh. 67, 274–292 (1990).

    ADS  Google Scholar 

  2. 2.

    B. Ya. Melekh, L. S. Pilyugin, and R. I. Korytko, “Relationship between intensities of strong emission lines in the spectra of H II regions and their chemical compositions,” Kinematics Phys. Celestial Bodies 28, 189–202 (2012).

    ADS  Article  Google Scholar 

  3. 3.

    F. Bresolin, D. Schaerer, R. M. González Delgado, et al., “A VLT study of metal-rich extragalactic H II regions. I. Observations and empirical abundances,” Astron. Astrophys. 441, 981–997 (2005).

    ADS  Article  Google Scholar 

  4. 4.

    K. Davidson, “On photoionization analyses of emission spectra of quasars,” Astrophys. J. 218, 20–32 (1977).

    ADS  Article  Google Scholar 

  5. 5.

    J. E. Dyson and D. A. Williams, Physics of the Interstellar Medium (Wiley, New York, 1997).

    Book  MATH  Google Scholar 

  6. 6.

    G. Ferland, L. Binette, M. Contini, et al., in The Analysis of Emission Lines. Proceedings of the Space Telescope Science Institute Symposium Held in Baltimore, Maryland, May 16–18, 1994, Ed. by R. Williams and M. Livio (Cambridge University Press, 2005).

  7. 7.

    G. J. Ferland, Hazy, a brief introduction to Cloudy 90.

  8. 8.

    L. Gutiérrez and J. E. Beckman, “The galaxy-wide distributions of mean electron density in the H II regions of M 51 and NGC 4449,” Astrophys. J., Lett. 710, L44–L48 (2010).

    ADS  Article  Google Scholar 

  9. 9.

    B. C. Koo and C. F. McKee, “Dynamics of wind bubbles and superbubbles. I. Slow winds and fast winds. II. Analytic theory,” Astrophys. J. 388, 93–126 (1992).

    ADS  Article  Google Scholar 

  10. 10.

    R. V. Kozel and B. Ya. Melekh, “Photoionization modelling of HII region with stellar wind bubble inside,” in Proceedings of the 16th Young Scientists’ Conference on Astronomy and Space Physics, Ed. by V. Ya. Choliy and G. Ivashchenko (Kyiv, 2009), pp. 37–41.

    Google Scholar 

  11. 11.

    T. Lanz and I. Hubeny, “A grid of non-LTE line-blanketed model atmospheres of O-type stars,” Astrophys. J., Suppl. Ser. 146, 417–441 (2003).

    ADS  Article  Google Scholar 

  12. 12.

    T. Lanz and I. Hubeny, “A grid of NLTE line-blanketed model atmospheres of early B-type stars,” Astrophys. J., Suppl. Ser. 169, 83–104 (2007).

    ADS  Article  Google Scholar 

  13. 13.

    C. Leitherer, D. Schaerer, J. D. Goaldader, et al., “Starburst 99: synthesis models for galaxies with active star formation,” Astrophys. J., Suppl. Ser. 123, 3–40 (1999).

    ADS  Article  Google Scholar 

  14. 14.

    B. Ya. Melekh, “Optimized photoionization modelling of H II region in blue compact dwarf galaxy SBS 0335-052,” J. Phys. Stud. 11, 353–365 (2007).

    Google Scholar 

  15. 15.

    B. Ya. Melekh, “Two-Stages optimized photoionization modelling of H II region in blue compact galaxy SBS 0335-052,” J. Phys. Stud., 13, 3901-1–3901-16 (2009).

    Google Scholar 

  16. 16.

    B. Ya. Melekh, I. O. Koshmak, and R. V. Kozel, “The influence of stellar wind bubbles on the radiation ionizing field in the nebular objects,” J. Phys. Stud. 3, 3901–3908 (2011).

    Google Scholar 

  17. 17.

    G. Mellema, “The interaction of stellar winds with their environment: theory and modelling,” Astrophys. Space Sci. 260, 203–213 (1998).

    ADS  Article  MATH  Google Scholar 

  18. 18.

    D. Pequignot, Model Nebulae. Proceedings of a Workshop Held at the Observatoire de Meudon, France, July 8–19 1985 (Observatoire de Paris-Meudon, Meudon, 1986).

    Google Scholar 

  19. 19.

    L. S. Pilyugin, J. M. Vilchez, and T. X. Thuan, “New improved calibration relations for the determination of electron temperatures and oxygen and nitrogen abundances in H II regions,” Astrophys. J. 720, 1738–1751 (2010).

    ADS  Article  Google Scholar 

  20. 20.

    J. P. Vallee, “Interstellar magnetic bubbles,” Astrophys. J. 419, 670–673 (1993).

    ADS  Article  Google Scholar 

  21. 21.

    R. Weaver, R. McCray, J. Castor, et al., “Interstellar bubbles. II. Structure and evolution,” Astrophys. J. 218, 377–395 (1977).

    ADS  Article  Google Scholar 

  22. 22.

    D. Zaritsky, R. C. Kennicutt, and J. P. Huchra, “H II regions and the abundance properties of spiral galaxies,” Astrophys. J. 420, 87–109 (1994).

    ADS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to I. O. Koshmak.

Additional information

Original Russian Text © I.O. Koshmak, B.Ya. Melekh, 2013, published in Kinematika i Fizika Nebesnykh Tel, 2013, Vol. 29, No. 6, pp. 3–19.

About this article

Cite this article

Koshmak, I.O., Melekh, B.Y. Modeling the emission of an H II region containing a bubble-like structure. Kinemat. Phys. Celest. Bodies 29, 257–268 (2013).

Download citation


  • Celestial Body
  • Stellar Wind
  • Fourth Component
  • Diagnostic Ratio
  • Normal Shock Wave