Skip to main content
Log in

Simulation of energy distributions in optical and IR spectra of late-type M4–M6 dwarfs

  • Physics of Stars and Interstellar Medium
  • Published:
Kinematics and Physics of Celestial Bodies Aims and scope Submit manuscript

Abstract

Spectral types (M4–M6), effective temperatures T ef (2700–2900 K), and free fall accelerations logg (4.0–4.5) are determined for five M dwarfs using their energy distributions in the spectral range λλ = 680…840 nm. Stellar spectra with resolutions R = 4000 were obtained using the IMACS spectrograph mounted on the ESO Walter Baade 6.5-m telescope. The spectral types are derived from spectral indices and the effective temperatures of the stars are estimated based on their spectral types. Values of T ef and logg are also derived from the comparison between the observed and theoretical energy distributions, calculated both for dust-free, standard NextGen model atmospheres of red dwarfs, and for semiempirical models considering the presence of dust in stellar atmospheres according to the technique developed by Pavlenko et al. We determine dust parameters for stellar atmospheres of these stars, and establish that it is necessary to account for the decrease in concentration of TiO molecules due to their condensation on dust grains, when T ef < 3000 K. We conclude that the radiation scattering by dust grains does not have an appreciable effect on energy distributions in the spectra of the considered stars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. P. Lyubchik, Candidate’s Dissertation in Mathematics and Physics (Kyiv, 2009).

  2. Yu. P. Lyubchik and Yu. V. Pavlenko, “Simulations of Optical Spectra of Late M Dwarfs,” Kinem. Fiz. Celest. Bodies 16(4), 324–335 (2000).

    ADS  Google Scholar 

  3. F. C. Adams and G. Laughlin, “A Dying Universe: The Long Term Fate and Evolution of Astrophysical Objects,” Rev. Mod. Phys. 69(2), 337–372 (1997).

    Article  ADS  Google Scholar 

  4. E. Anders and N. Grevesse, “Interstellar SiC in the Murchison and Murray Meteorites—Isotopic Composition of Ne, Xe, Si, C, and N,” Geochim. Cosmochim. Acta 53, 3273–3290 (1989).

    Article  ADS  Google Scholar 

  5. F. Allard, P. H. Hauschildt, D. R. Alexander, et al., “The Limiting Effects of Dust in Brown Dwarf Model Atmospheres,” Astrophys. J. 556, 357–363 (2001).

    Article  ADS  Google Scholar 

  6. J. J. Bochanski, S. L. Hawley, K. R. Covey, et al., “The Luminosity and Mass Functions of Low-Mass Stars in the Galactic Disk. II. The Field,” Astron. J. 139(6), 2679–2699 (2010).

    Article  ADS  Google Scholar 

  7. C. C. Dahn, H. C. Harris, F. J. Vrba, et al., “Astrometry and Photometry for Cool Dwarfs and Brown Dwarfs,” Astron. J. 124(2), 1170–1189 (2002).

    Article  ADS  Google Scholar 

  8. S. L. Folkes, PhD Thesis (Univ. of Hertfordshire, Hatfield, 2008).

  9. M. C. Gálvez-Ortiz, J. R. A. Clarke, D. J. Pinfield, et al., “Spectroscopy and Kinematics of Low-Mass Members of Young Moving Groups,” Mon. Not. R. Astron. Soc. 409(2), 552–566 (2010).

    Article  ADS  Google Scholar 

  10. P. Hauschildt, F. Allard, and E. Baron, “The NextGen Model Atmosphere Grid for 3000 ≤ T eff ≤ 10000 K,” Astrophys. J. 512(1), 377–385 (1999).

    Article  ADS  Google Scholar 

  11. H. R. A. Jones and T. Tsuji, “Spectral Evidence for Dust in Late-Type M Dwarfs,” Astrophys. J. 480, 1400–1411 (1997).

    Article  Google Scholar 

  12. J. D. Kirkpatrick, T. J. Heny, and D. W. McCathy, “A Standard Stellar Sequence in the Red/Near-Infrared: Classes K5 to M9,” Astron. Astrophys., Suppl. Ser. 77, 417–440 (1991).

    ADS  Google Scholar 

  13. J. D. Kirkpatrick, T. J. Heny, and D. A. Simons, “The Solar Neighborhood. 2: The First List of Dwarfs with Spectral Types of M7 and Cooler,” Astron. J. 109(2), 797–807 (1995).

    Article  ADS  Google Scholar 

  14. J. D. Kirkpatrick, D. M. Kelly, G. H. Rieke, et al., “M Dwarf Spectra from 0.6 to 1.5 Micron—A Spectral Sequence, Model Atmosphere Fitting, and the Temperature Scale,” Astrophys. J. 402(2), 643–654 (1993).

    Article  ADS  Google Scholar 

  15. F. Kupka, N. Piskunov, T. A. Ryabchikova, et al., “VALD-2: Progress of the Vienna Atomic Line Data Base,” Astron. Astrophys., Suppl. Ser. 138, 119–133 (1999).

    Article  ADS  Google Scholar 

  16. G. Laughlin, P. Bodenheimer, and F. C. Adams, “The End of the Main Sequence,” Astrophys. J. 482, 420–432 (1997).

    Article  ADS  Google Scholar 

  17. Yu. Lyubchik and Ya. Pavlenko, “Lithium Abundances in Atmospheres of PMS Stars FN Tau and V927 Tau,” Kinem. Fiz. Celest. Bodies 16(3), 360–362 (2000).

    Google Scholar 

  18. E. L. Martin, X. Delfosse, G. Basri, et al., “Spectroscopic Classification of Late-M and L Field Dwarfs,” Astron. J. 118, 2466–2482 (1999).

    Article  ADS  Google Scholar 

  19. E. L. Martin, R. Rebolo, and M. R. Zapatero-Osorio, “Spectroscopy of New Substellar Candidates in the Pleiades: Toward a Spectral Sequence for Young Brown Dwarfs,” Astron. J. 469, 706 (1996).

    Article  ADS  Google Scholar 

  20. Ya. Pavlenko, “PatAnalysis of the Spectra of Two Pleiades Brown Dwarfs: Teide 1 and Calar 3,” Astrophys. Space Sci. 253, 43–53 (1997).

    Article  ADS  Google Scholar 

  21. Ya. V. Pavlenko, H. R. A. Jones, Yu. Lyubchik, et al., “Spectral Energy Distribution for GJ406,” Astron. Astrophys. 447(2), 709–717 (2006).

    Article  ADS  Google Scholar 

  22. Ya. V. Pavlenko, H. R. A. Jones, E. L. Martin, et al., “Lithium in LP944-20,” Mon. Not. R. Astron. Soc. 380(3), 1285 (2007).

    Article  ADS  Google Scholar 

  23. B. Plez, “A New TiO Line List,” Astron. Astrophys. 337, 495–500 (1998).

    ADS  Google Scholar 

  24. I. N. Reid and K. L. Cruz, “Meeting the Cool Neighbors. I. Nearby Stars in the NLTT Catalogue: Defining the Sample,” Astron. J. 123, 2828–2840 (2002).

    Article  ADS  Google Scholar 

  25. L. Testi, “A Low-Resolution Near-Infrared Spectral Library of M-, L-, and T-Dwafs,” Astron. Astrophys. 503, 639–650 (2009).

    Article  ADS  Google Scholar 

  26. T. Tsuji, K. Ohnaka, and W. Aoki, “Dust Formation in Stellar Photospheres: a Case of Very Low Mass Stars and a Possible Resolution on the Effective Temperature Scale of M Dwarfs,” Astron. Astrophys. 305, L1–L4 (1996).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © M.K. Kuznetsov, Ya.V. Pavlenko, M.K. Galvez-Ortiz, 2012, published in Kinematika i Fizika Nebesnykh Tel, 2012, Vol. 28, No. 6, pp. 32–44.

About this article

Cite this article

Kuznetsov, M.K., Pavlenko, Y.V. & Galvez-Ortiz, M.K. Simulation of energy distributions in optical and IR spectra of late-type M4–M6 dwarfs. Kinemat. Phys. Celest. Bodies 28, 280–287 (2012). https://doi.org/10.3103/S0884591312060050

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0884591312060050

Keywords

Navigation