Skip to main content
Log in

Spots on asteroid surfaces: Research opportunities using ground-based instruments

  • Dynamics and Physics of Bodies of the Solar System
  • Published:
Kinematics and Physics of Celestial Bodies Aims and scope Submit manuscript

Abstract

We discuss possible mechanisms for the formation of albedo spots on asteroids. We infer that the most likely mechanisms are impact cratering and related processes. This is confirmed by the reflectance spectra of the asteroids 10 Hygiea, 135 Hertha, and 196 Philomela, the results of a spectral frequency analysis of the sizes of features on the surface of 4 Vesta and 21 Lutetia, and the estimates for the parameters of impact features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. A. Akimov, “On the Nature of Opposition Effect,” Vestn. Khark. Univ., No. 204, 3–12 (1980).

  2. L. A. Akimov, Yu. I. Velikodskii, and V. V. Korokhin, “The Dependence of the Latitude Distribution of the Brightness over the Lunar Disk on Albedo and Relief,” Kinem. Fiz. Nebes. Tel 16, 181–187 (2000).

    ADS  Google Scholar 

  3. L. A. Akimov, D. F. Lupishko, and I. N. Bel’skaya, “Photometric Heterogeneity of Asteroid Surfaces,” Sov. Astron. 27, 577 (1983).

    ADS  Google Scholar 

  4. P. B. Babadzhanov and Yu. V. Obrubov, “Meteoroid Streams: Formation, Evolution and Relationship with Comets and Asteroids,” Astron. Vestn. 25, 378–407 (1991).

    ADS  Google Scholar 

  5. P. A. Bakut and V. I. Mandrosov, “Statistic and Coherent Properties of Scattered Light Fields for Different Geometrical Parameters of Rough Surfaces,” Quantum Electron. 36, 239 (2006).

    Article  ADS  Google Scholar 

  6. N. P. Barabashov, M. S. Bronshten, N. L. Zel’tser, et al., The Moon, Ed. by A. V. Markov (Fizmatlit, Moscow, 1960) [in Russian].

    Google Scholar 

  7. S. I. Barabanov and M. A. Smirnov, “Analysis of the Content of Large Bodies in Selected Meteor and Bolide Streams Based on Data of Meteor Astronomy and Observations Performed at INASAN since 1995,” in Proceedings of the Conference on Near-Earth Astronomy 2003 (St.-Petersburg, 2003), Vol. 1, pp. 199–205.

  8. V. V. Busarev, “Spectrophotometry of Atmosphereless Celestial Bodies of the Solar System,” Solar Syst. Res. 33, 120 (1999).

    ADS  Google Scholar 

  9. V. V. Busarev, “Hydrated Silicates on M-, S-, and E-Type Asteroids as Possible Traces of Collisions with Bodies from the Jupiter Growth Zone,” Solar Syst. Res. 36, 35 (2002).

    Article  ADS  Google Scholar 

  10. V. V. Busarev, “Spectral Studies of Asteroids 21 Lutetia and 4 Vesta as Objects of Space Missions,” Solar Syst. Res. 44, 507 (2010).

    Article  ADS  Google Scholar 

  11. V. V. Busarev, “Asteroids 10 Hygiea, 135 Hertha, and 196 Philomela: Heterogeneity of the Material from the Reflectance Spectra,” Solar Syst. Res. 45, 43 (2011).

    Article  ADS  Google Scholar 

  12. V. V. Busarev, V. V. Prokofjeva-Mikhailovskaya, and V. V. Bochkov, “Spectral and Spectral-Frequency Methods of Investigating Atmosphereless Bodies of the Solar System,” Phys. Usp. 50, 637 (2007).

    Article  ADS  Google Scholar 

  13. A. V. Vityazev, G. V. Pechernikova, and V. S. Safronov, Terrestrial Planets: Origin and Early Evolution (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  14. Yu. I. Voloshchuk, B. L. Kashcheev, and V. G. Kruchinenko, Meteors and Meteoric Substance (Naukova Dumka, Kiev, 1989) [in Russian].

    Google Scholar 

  15. O. N. Gadomskii and K. V. Krutitskii, “Near Field Effect in Surface Optics,” Zh. Prikl. Spektrosk. 63, 278–291 (1996).

    Google Scholar 

  16. N. B. Divari, The Zodiacal Light and Interplanet Dust (Znanie, Moscow, 1981), p. 64 [in Russian].

    Google Scholar 

  17. Zh. M. Dlugach and M. I. Mishchenko, “Coherent Backscatter as One of the Possible Mechanisms of Forming the Opposition Brightness Peak for Some Bodies of the Solar System,” Solar Syst. Res. 33, 472 (1999).

    ADS  Google Scholar 

  18. S. I. Ipatov, Migration of Celestial Bodies in the Solar System (Editorial URSS, Moscow, 2000) [in Russian].

    Google Scholar 

  19. S. I. Ipatov, “Formation of Transneptunian Bodies and their Migration to the Earth,” in Proceedings of the Conference on Near-Earth Astronomy of 21st Century (GEOS, Moscow, 2003), pp. 388–400.

    Google Scholar 

  20. S. I. Ipatov, “Migration of Transneptunian Objects to Terrestial Planets,” in Proceedings of the Conference on Near-Earth Astronomy 2003 (St.-Petersburg, 2003), pp. 87–94.

  21. A. M. Kazantsev, “Migration Velocities of Asteroids from MBA to Terrestial Planets,” in Proceedings of the All-Russia Conference on Asteroid-Comet Hazard-2005 (St.-Petersburg, 2005), pp. 163–165.

  22. W. M. Kaula, Introduction to Planetary Physics: The Terrestrial Planets (Wiley, New York, 1968; Mir, Moscow, 1971).

    Google Scholar 

  23. V. V. Korokhin and L. A. Akimov, “Mapping of Phase Parameters of the Lunar-Surface Brightness,” Solar Syst. Res. 31, 128 (1997).

    ADS  Google Scholar 

  24. V. L. Kuz’min and I. V. Meglinskii, “Numerical Simulation of Coherent Backscattering and Temporal Intensity Correlations in Random Media,” Quantum Electron. 36, 990 (2006).

    Article  ADS  Google Scholar 

  25. V. L. Kuz’min and V. P. Romanov, “Coherent Phenomena in Light Scattering from Disordered Systems,” Phys. Usp. 39, 231 (1996).

    Article  Google Scholar 

  26. A. B. Makalkin and I. N. Ziglina, “Formation of Small Bodies (Planetesimals) in Early Solar System,” in Proceedings of the Conference on Near-Earth Astronomy 2003 (St.-Petersburg, 2003), pp. 70–80 [in Russian].

  27. T. B. Mccord and J. B. Adams, “Use of Ground-Based Telescopes in Determining the Composition of the Surface of Solar System Objects,” in Proceedings of the US-Soviet Conference on Cosmochemistry of Moon and Planets, Ed. by A. P. Vinogradov (Nauka, Moscow, 1975), pp. 547–573.

    Google Scholar 

  28. Yu. V. Obrubov, “Complexes of Minor Solar System Bodies,” Sov. Astron. 35, 531 (1991).

    ADS  Google Scholar 

  29. V. V. Prokofjeva, V. V. Bochkov, and V. V. Busarev, “The Surface Structure of the M-Type Asteroid 21 Lutetia: Spectral and Frequency Analysis,” Solar Syst. Res. 39, 410 (2005).

    Article  ADS  Google Scholar 

  30. V. V. Prokofjeva-Mikhailovskaya, A. N. Rublevskii, and V. V. Bochkov, “Water Combinations on the Surface of the Asteroid 4 Vesta,” Izv. Krym. Astrofiz. Observ. 104, 218–228 (2008).

    Google Scholar 

  31. E. L. Ruskol and V. S. Safronov, “Jupiter Growth as an Essential Factor for the Formation of the Planetary System,” Solar Syst. Res. 32, 255 (1998).

    ADS  Google Scholar 

  32. V. S. Safronov, Evolution of Protoplanetary Cloud and Formation of the Earth and the Planets, NASA TT F-677 (Nauka, Moscow, 1969; Israel Program for Scientific Translations, Jerusalem, 1972).

    Google Scholar 

  33. V. S. Safronov and I. N. Ziglina, “Origin of the Asteroid Belt,” Astron. Vestn. 25, 190–199 (1991).

    ADS  Google Scholar 

  34. I. G. Slyusarev, “Optical Properties of Trojan Asteroids and Planet Migration,” in Proceedings of the 4th Barashov Regional Scientific Readings (Kharkiv, 2009), pp. 7–8.

  35. M. A. Smirnov and E. S. Bakanas, “Statistical Model of Migration of Asteroid from Main Belt into Internal Part of Solar System,” in Proceedings of the All-Russia Conference on Asteroid-Comet Hazard 2005 (St.-Petersburg, 2005), pp. 300–303.

  36. K. P. Stanyukovich and V. V. Fedynskii, “On the Destructive Effect of Meteor Impacts,” Dokl. Akad. Nauk SSSR 57, 129–132 (1947).

    Google Scholar 

  37. V. G. Fesenkov, “Zodiacal Light as the Product of Disintegration of Asteroids,” Astron. Vestn. 35, 327–334 (1958).

    Google Scholar 

  38. T. M. Eneev, “On Possible Structure Exterior (Trans-Neptune) Area of the Solar System,” Sov. Astron. Lett. 6, 163 (1980).

    ADS  Google Scholar 

  39. J. B. Adams, “Interpretation of Visible and Near-Infrared Diffuse Reflectance Spectra of Pyroxenes and Other Rock-Forming Minerals,” in Infrared and Raman Spectroscopy of Lunar and Terrestrial Minerals, Ed. by C. Karr (Academic, New York, 1975), pp. 91–116.

    Google Scholar 

  40. V. V. Busarev, “Spectral Features of M-Asteroids: 75 Eurydike and 201 Penelope,” Icarus 131, 32–40 (1998).

    Article  ADS  Google Scholar 

  41. V. V. Busarev, “Where Some Asteroid Parent Bodies?,” Lunar Planetary Scientific 35th Conference (Houston, 2004), Abstract N1026.

  42. V. V. Busarev, V. A. Dorofeeva, and A. B. Makalkin, “Hydrated Silicates on Edgeworth-Kuiper Objects-Probable Ways of Formation,” Earth, Moon Planets 92, 345–357 (2003).

    Article  ADS  Google Scholar 

  43. V. V. Busarev, M. V. Volovetskij, M. N. Taran, et al., “Results of Reflectance Spectral, Mössbauer, X-Ray and Electron Microprobe Investigations of Terrestrial Serpentine Samples,” 48th Vernadsky-Brown Microsymposium on Comparative Planetology (Moscow, 2008), Abstract No. 6.

  44. G. S. Collins, H. Melosh, and R. A. Marcus, “Earth Impact Effects Program: A Web-Based Computer Program for Calculating the Regional Environmental Consequences of a Meteorois Impact on Earth,” Meteorit. Planet. Sci. 40, 817–840 (2005).

    Article  ADS  Google Scholar 

  45. R. T. Dodd, Meteorites—a Petrologic-Chemical Synthesis (Cambridge Univ. Press, Cambridge, 1981).

    Google Scholar 

  46. M. J. Gaffey, J. F. Bell, and D. P. Cruikshank, “Reflectance Spectroscopy and Asteroid Surface Mineralogy,” in Asteroids II, Ed. by R. P. Binzel, T. Gehrels, and M. S. Mattews (Univ. Arizona Press, Tucson, 1989), pp. 98–127.

    Google Scholar 

  47. A. Ghosh, S. J. Weidenschilling, H. Y. McSween, and A. Rubin, “Asteroidal Heating and Thermal Stratification of the Asteroid Belt,” in Meteorites and the Early Solar System II, Ed. by D. S. Lauretta and H. Y. McSween (Univ. Arizona Press, Tucson, 2006), pp. 555–566.

    Google Scholar 

  48. N. N. Gorkavyi, L. M. Ozernoy, J. C. Mather, and T. Taidakova, “Quasi-Stationary States of Dust Flows Under Poynting-Robertson Drag: New Analytical and Numerical Solutions,” Astrophys. J. 488, 268–276 (1997); http://xxx.lanl.gov/abs/astro-ph/9706167.

    Article  ADS  Google Scholar 

  49. N. N. Gorkavyi, L. M. Ozernoy, J. C. Mather, and T. Taidakova, “The NGST and the Zodiacal Light in the Solar System,” in NGST Science and Technology Exposition, Ed. by E. P. Smith and K. S. Long, ASP Conf. Ser. 207, 462–467 (2000); http://xxx.lanl.gov/abs/astro-ph/9910551.

  50. N. N. Gorkavyi, A. N. Rublevsky, and V. V. Prokofjeva-Mikhajlovskaya, “The Sizes of Impact Craters and Ejecta Spots on Asteroids,” in Proceedings of the International Conference ACH-2009 on Protecting the Earth Against Collisions with Asteroids and Comet Nuclei, St.-Petersburg, 21–25 Sept. 2009, Ed. by A. M. Finkelstein, W. F. Huebner, and V. A. Shor (Nauka, St.-Petersburg, 2010), pp. 62–64.

    Google Scholar 

  51. R. A. F. Grieve, “Terrestrial Impact: The Record in the Rocks,” Meteoritics 26, 175–194 (1991).

    ADS  Google Scholar 

  52. B. Hapke, “Bidirectional Reflectance Spectroscopy. 1. Theory,” J. Geophys. Res. 86, 3039–3054 (1981).

    Article  ADS  Google Scholar 

  53. H. H. Hsieh and D. Jewitt, “A Population of Comets in the Main Asteroid Betl,” Science 312, 261–563 (2006).

    Article  Google Scholar 

  54. S. I. Ipatov, A. S. Kutyrev, G. J. Madsen, et al., “Dynamical Zodiacal Cloud Models Constrained by High Resolution Spectroscopy of the Zodiacal Light,” Icarus 194, 769–788 (2008).

    Article  ADS  Google Scholar 

  55. B. A. Ivanov, G. Neukim, and R. Wagner, “Impact Craters, NEA and Main Belt Asteroids: Size Frequency Distribution,” Lunar Planet Scientific 30th Conference (Houston, 1999), Abstract No. 1583.

  56. A. A. Jackson and H. A. Zook, “A Solar System Dust Ring with the Earth as Its Shepherd,” Nature 337(6208), 629–637 (1989).

    Article  ADS  Google Scholar 

  57. K. Keil, “Thermal Alteration of Asteroids: Evidence from Meteorites,” Planet. Space Sci. 48, 887–903 (2000).

    Article  ADS  Google Scholar 

  58. K. Keil, D. Stoffler, S. G. Love, and E. R. D. Scott, “Constraints on the Role of Impact Heating and Melting in Asteroids,” Meteorit. Planet. Sci. 32, 349–363 (1997).

    Article  ADS  Google Scholar 

  59. F. J. Low, D. A. Beitema, T. N. Gautier, et al., “Infrared Cirrus; New Components of the Extended Infrared Emission,” Astrophys. J. 278, L19–L22 (1984).

    Article  ADS  Google Scholar 

  60. H. Y. McSween, A. Ghosh, R. E. Grimm, et al., “Thermal Evolution Models of Asteroids,” in Asteroids III, Ed. by W. Bottke et al. (Univ. Arizona Press, Tucson, 2002), pp. 559–571.

    Google Scholar 

  61. H. J. Melosh, Impact Cratering. A Geologica Process (Oxford Univ. Press, New York, 1989).

    Google Scholar 

  62. L. M. Ozernoy, “Physical Modeling of the Zodiacal Dust Cloud,” in The Extragalactic Infrared Background and its Cosmological Limplications, Ed. by M. Harwitt and M. G. Hauser, IAU/ASP Symp. 204, 17–34 (2001); http://xxx.lanl.gov/abs/astro-ph/0012033.

  63. L. M. Ozernoy, N. N. Gorkavyi, and T. Taidakova, “Four Cometary Belts Associated with the Orbits of Giant Planets: A New View of the Outer Solar System’s Structure Emerges from Numerical Simulations,” Planet. Space Sci. 48, 993–1003 (2000).

    Article  ADS  Google Scholar 

  64. E. V. Petrova, V. P. Tishkovets, and K. Jockers, “Modeling of Opposition Effects with Ensembles of Clusters: Interplay of Various Scattering Mechanisms,” Icarus 188, 233–245 (2007).

    Article  ADS  Google Scholar 

  65. A. S. Rivkin, L. A. Hovell, L. A. Lebovski, et al., “The Nature of M-Class Asteroids from 3 μm Observations,” Icarus 145, 351–368 (2000).

    Article  ADS  Google Scholar 

  66. N. Schedemann, G. Neukum, T. Denk, and R. Wagner, “Impact Crater Size-Frequency Distribution (SFD) on Saturnian Satellites and Comparison with Other Solar-System Bodies,” 40th Lunar Planet Scientific Conference (2009), Abstract No. 1941.

  67. Yu. G. Shkuratov and N. V. Bondarenko, “Regolith Thickness Mapping of the Moon by Radar and Optical Date,” Icarus 149, 329–338 (2001).

    Article  ADS  Google Scholar 

  68. Yu. Shkuratov, L. Starukhina, H. Hoffmann, and G. Arnold, “A Model of Spectral Albedo of Particulate Surfaces: Implication to Optical Properties of the Moon,” Icarus 137, 235–246 (1999).

    Article  ADS  Google Scholar 

  69. M. V. Sykes, R. Greenberg, S. F. Dermott, et al., “Dust Bands in the Asteroid Belt,” in Asteroids II, Ed. by R. P. Binzel, T. Gehrels, and M. S. Mattews (Univ. Arizona Press, Tucson, 1989), pp. 336–367.

    Google Scholar 

  70. L. A. Taylor, C. M. Pieters, L. P. Keller, et al., “Lunar Mare Soils: Space Wearthering and the Major Effects of Surface-Correlated Nanophase Fe,” J. Geophys. Res. 106, 27985–28000 (2001).

    Article  ADS  Google Scholar 

  71. D. J. Tholen, “Asteroid Taxonomic Classifications,” in Asteroids II, Ed. by R. P. Binzel, T. Gehrels, and M. S. Mattews (Univ. Arizona Press, Tucson, 1989), pp. 1139–1150.

    Google Scholar 

  72. E. Zubko, Y. Shkuratov, M. Mishchenko, and G. Videen, “Light Scattering in a Finite Multiparticle System,” J. Quant. Spectrosc. Radiat. Transfer 109, 2195–2206 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Busarev.

Additional information

Original Russian Text © V.V. Busarev, V.V. Prokof’eva-Mikhailovskaya, A.N. Rublevskii, N.N. Gor’kavyi, 2012, published in Kinematika i Fizika Nebesnykh Tel, 2012, Vol. 28, No. 1, pp. 3–15.

About this article

Cite this article

Busarev, V.V., Prokof’eva-Mikhailovskaya, V.V., Rublevskii, A.N. et al. Spots on asteroid surfaces: Research opportunities using ground-based instruments. Kinemat. Phys. Celest. Bodies 28, 1–8 (2012). https://doi.org/10.3103/S0884591312010059

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0884591312010059

Keywords

Navigation