Skip to main content
Log in

Lower atmosphere in the main phase of a two-ribbon solar flare

  • Solar Physics
  • Published:
Kinematics and Physics of Celestial Bodies Aims and scope Submit manuscript

Abstract

This paper investigates the physical state of the photosphere in the main phase of the two-ribbon solar flare on June 3, 1979. The derived models show that the photosphere was in a disturbed state for a long time during the main phase of the flare. In the models, the temperature in the upper photospheric layers is higher and that in the lower layers is lower than in the quiet-sun model atmosphere. During the flare, the heating extends to the lower photospheric layers, and the upper layers cool down. A comparison of the obtained models to those for the two-ribbon solar flare on October 7, 1979, shows that the height distributions of the temperature in the main phase of the flares are strongly different.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. V. Alikaeva, E. A. Baranovskii, and N. N. Kondrashova, “Time Changes of Chromospheric and Photospheric Matter State in Flare Loop Structure,” in Proceedings of the 7th Symposium on Solar-Earth Physics in Russia and CIS Countries, Troitsk, 1999 (IZMIRAN, Troitsk, 1999), pp. 28–34.

    Google Scholar 

  2. K. V. Alikaeva, E. A. Baranovskii, N. N. Kondrashova, et al., “Semiempirical Photospheric Models of Solar Activity Complex,” Kinem. Fiz. Nebes. Tel 11(2), 11–24 (1994).

    Google Scholar 

  3. K. V. Alikaeva and N. N. Kondrashova, “Photospheric Model Transformation in the Course of a Solar Two-Ribbon Flare,” Kinem. Fiz. Nebesn. Tel 22(3), 163–172 (2006).

    ADS  Google Scholar 

  4. A. S. Gadun and V. A. Sheminova, SRANSAT: Calculation Program of Profiles of Spectral Absorbtion Lines in Stellar Atmospheric in LTE Approach (Kiev, 1988) [in Russian].

  5. E. A. Gurtovenko and R. I. Kostyk, Fraunhofer Spectrum and System of Solar Oscillator Strengths (Naukova Dumka, Kiev, 1989) [in Russian].

    Google Scholar 

  6. N. N. Kondrashova, “Izmenenie of Line Asymmetry during Solar Flare 7 Oct. 1979,” Kinem. Fiz. Nebes. Tel 4(4), 23–28 (1988).

    ADS  Google Scholar 

  7. N. N. Kondrashova and E. G. Rudnikova, “Spectral Investigation of a Two Ribbon Solar Flare. I. Profiles and Asymmetry of Lines,” Kinem. Fiz. Nebes. Tel 29(2), 97–106 (2003).

    ADS  Google Scholar 

  8. N. N. Kondrashova, E. G. Rudnikova, and M. N. Pasechnik, “Motions of Chromospheric and Photospheric Material in a Two Ribbon Solar Flare,” Kinem. Fiz. Nebes. Tel 17(6), 485–495 (2001).

    ADS  Google Scholar 

  9. J. M. Beckers, “A Table of Zeeman Multiplets,” Phys. Sci. Res. Papers, No. 371 (1969).

  10. A. Berlicki, P. Heinzel, B. Schmieder, et al., “Non-LTE Diagnostics of Velocity Fields during the Gradual Phase of a Solar Flare,” Astron. Astrophys. 430, 679–689 (2005).

    Article  ADS  Google Scholar 

  11. P. J. Cargill and E. R. Priest, “The Heating of Postflare Loops,” Astrophys. J. 266, 383–389 (1983).

    Article  ADS  Google Scholar 

  12. A. Czaykowska, D. Alexander, and B. De Pontieu, “Chromospheric Heating in the Late Phase of Two-Ribbon Flares,” Astrophys. J. 552, 849–857 (2001).

    Article  ADS  Google Scholar 

  13. G. A. Doschek, J. P. Boris, C.-C. Cheng, et al., “A Numerical Simulation of Cooling Coronal Flare Plasma,” Astrophys. J. 258, 373–383 (1982).

    Article  ADS  Google Scholar 

  14. A. Falchi, R. Galciani, and L. A. Smaldone, “Abalysis of the Optical Spectra of the Solar Flare. VI. Velocity Field in the 13 June 1980 Flare Area,” Astron. Astrophys. 256, 255–263 (1992).

    ADS  Google Scholar 

  15. A. Falchi, J. Qiu, and G. Cauzzi, “Chromospheric Evidence for Magnetic Reconnection,” Astron. Astrophys. 328, 371–380 (1997).

    ADS  Google Scholar 

  16. W. Q. Gan and C. Fang, “Timep-Match Semi-Empirical Models of the Chromospheric Flare on 3 February, 1983,” Solar Phys. 107, 311–321 (1987).

    Article  ADS  Google Scholar 

  17. W. Q. Gan and C. Ganf, “A Hydrodynamic Model of the Gradual Phase of the Solar Flare Loop,” Astrophys. J. 358, 328–337 (1990).

    Article  ADS  Google Scholar 

  18. P. Gingerich, R. W. Noyes, W. Kalkofen, and Y. Cuny, “The Harvard-Smithsonian Reference Atmosphere,” Solar Phys. 18, 347–365 (1971).

    Article  ADS  Google Scholar 

  19. R. A. Kopp and G. W. Pneuman, “Magnetic Reconnection in the Corona and the Loop Prominence Phenomenon,” Solar Phys. 50, 85–98 (1976).

    Article  ADS  Google Scholar 

  20. E. V. Kurochka, V. G. Lozitsky, and O. B. Osyka, “Temporal Changes of Physical Conditions in the Photospheric Layers of a Solar Frale,” Kinem. Phys. Cel. Bodies 24, 215–222 (2008).

    Article  Google Scholar 

  21. M. E. Machado, E. H. Avrett, J. E. Vernazza, and R. W. Noyes, “Semiempirical Models of Chromospheric Flare Regions,” Astrophys. J. 242, 336–351 (1980).

    Article  ADS  Google Scholar 

  22. M. E. Machado and J. L. Linsky, “Flare Model Chromospheres and Photospheres,” Solar Phys. 42, 395–420 (1975).

    Article  ADS  Google Scholar 

  23. C. E. Moore, M. G. J. Minnaert, and J. Houtgast, The Solar Spectrum 2935 to 8770 A (National Bureau of Standards, Washington, DC, 1966).

    Google Scholar 

  24. F. Nagai, “A Model of Hot Loops Associated with Solar Flares. I. Gasdynamics in the Loops,” Solar Phys. 68, 351–379 (1980).

    Article  ADS  Google Scholar 

  25. C. B. Ruiz and I. J. C. del Toro, “Inversion of Stokdes Profiles,” Astrophys. J. 398, 375–385 (1992).

    Article  ADS  Google Scholar 

  26. B. Schmieder, T. G. Forbes, J. M. Malherbe, and M. E. Machado, “Evidence for Gentle Chromospheric Evaporation During the Gradual Phase of Large Solar Flare,” Astrophys. J. 317, 956–963 (1987).

    Article  ADS  Google Scholar 

  27. Solar Geophys. Data 431(Pt. 2), 37 (1980).

  28. Z. Svestka, “Cooling of a Coronal Flare Loop Through Radiation and Conduction,” Solar Phys. 108(2), 411–414 (1987).

    Article  ADS  Google Scholar 

  29. Z. Svestka, “Solar Flares — The Gradual Phase,” Solar Phys. 121, 399–417 (1980).

    Article  ADS  Google Scholar 

  30. J. E. Vernazza, E. H. Avrett, and R. Loeser, “Structure of the Solar Chromosphere. III. Models of the EUV Brightness Components of the Quiet Sun,” Astrophys. J. Suppl. Ser. 45, 635–725 (1981).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Kondrashova.

Additional information

Original Russian Text © N.N. Kondrashova, 2011, published in Kinematika i Fizika Nebesnykh Tel, 2011, Vol. 27, No. 2, pp. 43–52.

About this article

Cite this article

Kondrashova, N.N. Lower atmosphere in the main phase of a two-ribbon solar flare. Kinemat. Phys. Celest. Bodies 27, 86–91 (2011). https://doi.org/10.3103/S0884591311020061

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0884591311020061

Keywords

Navigation